scispace - formally typeset
Search or ask a question
Topic

Antigen

About: Antigen is a research topic. Over the lifetime, 170233 publications have been published within this topic receiving 6982342 citations. The topic is also known as: antibody generator & Antigen.


Papers
More filters
Journal ArticleDOI
TL;DR: The ACIF test was used as a tool to trace the Epstein‐Barr virus genome at the cellular level to study the complementfixing antigens of human lymphoblastoid cell lines.
Abstract: Anti-complement immunofluorescence (ACIF) was used to study the complementfixing antigens of human lymphoblastoid cell lines. These cell lines carry the Epstein-Barr virus (EBV) genome although only producer cultures synthetize EBV-specific antigens (virus capsid antigen, VCA and early antigen, EA) detectable by direct and indirect immunofluorescence, usually in less than 5% of the cells. The ACIF test revealed an antigen localized in the nucleus of the lymphoblastoid cells. In contrast to EA and VCA, this antigen was present in over 90% of the cells of both producer and non-producer cultures. The antigen was shown to be specific for EBV by comparing the reactions of 52 sera in the ACIF test. Sera giving the nuclear reaction contained antibodies to VCA, EA or antigens detectable by complement fixation tests on cell extracts, but sera without EBV antibodies failed to give the reaction. Weak, equivocal or discordant reactions occurred with six sera with low titres in VCA, EA or complement fixation tests. Cell lines derived by transformation of human and primate lymphocytes by EBV gave the nuclear reaction. Control cells with no known association with EBV were non-reactive. These included foetal lymphocytes transformed by phytohaemagglutinin, cell lines derived from breast cancer, glioma, normal glia, pleuritis maligna and myeloma, and two marmoset lymphoid lines carrying Herpesvirus saimiri (HVS). In preliminary experiments, the ACIF test was used as a tool to trace the EBV genome at the cellular level. Cells from two Burkitt lymphoma biopsies, one tested after biopsy and one after passaging in nude mice, contained an EBV-specific antigen. Three clones of cells derived from hybrids of mouse somatic cells and a human lymphoblastoid cell line also contained such an antigen, but the number of reactive cells varied from clone to clone. A fourth clone was non-reactive.

1,632 citations

Journal ArticleDOI
TL;DR: It is shown that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1 β (IL-1β).
Abstract: The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.

1,628 citations

Journal ArticleDOI
TL;DR: Improvements in a method for the specific microscopic localization of antigen in tissue cells are described and two isomeric series derived from nitrofluorescein are described.
Abstract: Improvements in a method for the specific microscopic localization of antigen in tissue cells are described. This method employs antibody labelled with fluorescein isocyanate as a histochemical stain, the specific antigen-antibody precipitate being made visible under the fluorescence microscope. Two isomeric series derived from nitrofluorescein are described.

1,627 citations

Journal ArticleDOI
TL;DR: N-terminal region sequence analysis of the molecule has identified the cofactor as beta 2-glycoprotein I (beta 2GPI) (apolipoprotein H), a plasma protein known to bind to anionic phospholipids, indicating that the presence of beta 2G PI is an absolute requirement for antibody-phospholipid interaction.
Abstract: Anti-phospholipid (aPL) antibodies that exhibit binding in cardiolipin (CL) ELISA can be purified to greater than 95% purity by sequential phospholipid affinity and ion-exchange chromatography. However, these highly purified aPL antibodies do not bind to the CL antigen when assayed by a modified CL ELISA in which the blocking agent does not contain bovine serum, nor do they bind to phospholipid affinity columns. Binding to the phospholipid antigen will only occur if normal human plasma, human serum, or bovine serum is present, suggesting that the binding of aPL antibodies to CL requires the presence of a plasma/serum cofactor. Using sequential phospholipid affinity, gel-filtration, and ion-exchange chromatography, we have purified this cofactor to homogeneity and shown that the binding of aPL antibodies to CL requires the presence of this cofactor in a dose-dependent manner. N-terminal region sequence analysis of the molecule has identified the cofactor as beta 2-glycoprotein I (beta 2GPI) (apolipoprotein H), a plasma protein known to bind to anionic phospholipids. These findings indicate that the presence of beta 2GPI is an absolute requirement for antibody-phospholipid interaction, suggesting that bound beta 2GPI forms the antigen to which aPL antibodies are directed. Recent evidence indicates that beta 2GPI exerts multiple inhibitory effects on the coagulation pathway and platelet aggregation. Interference with the function of beta 2GPI by aPL antibodies could explain the thrombotic diathesis seen in association with these antibodies.

1,598 citations

Journal ArticleDOI
TL;DR: The current state of the field regarding the natural ligands and molecular factors required for positive and negative selection are summarized and a model for how these disparate outcomes can be signaled via the same receptor is discussed.
Abstract: A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.

1,592 citations


Network Information
Related Topics (5)
Antibody
113.9K papers, 4.1M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
94% related
Cytokine
79.2K papers, 4.4M citations
92% related
Cytotoxic T cell
92.4K papers, 4.7M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
20233,983
20225,279
20213,228
20203,444
20193,267