scispace - formally typeset
Search or ask a question
Topic

Antigen

About: Antigen is a research topic. Over the lifetime, 170233 publications have been published within this topic receiving 6982342 citations. The topic is also known as: antibody generator & Antigen.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggested that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein.
Abstract: Point mutations in the p53 gene are the most frequently identified genetic change in human cancer. They convert murine p53 from a tumour suppressor gene into a dominant transforming oncogene able to immortalize primary cells and bring about full transformation in combination with an activated ras gene. In both the human and murine systems the mutations lie in regions of p53 conserved from man to Xenopus. We have developed a monoclonal antibody to p53 designated PAb240 which does not immunoprecipitate wild type p53. A series of different p53 mutants all react more strongly with PAb240 than with PAb246. The PAb240 reactive form of p53 cannot bind to SV40 large T antigen but does bind to HSP70. In contrast, the PAb246 form binds to T antigen but not to HSP70. PAb240 recognizes all forms of p53 when they are denatured. It reacts with all mammalian p53 and chicken p53 in immunoblots. We propose that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggest that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein. This conformational change abolishes T antigen binding and promotes self-oligomerization. These results are consistent with a dominant negative model where mutant p53 protein binds to and neutralizes the activity of p53 in the wild type conformation.

972 citations

Journal ArticleDOI
TL;DR: Findings suggest that CTLA-4 antibody blockade increases tumor immunity in some previously vaccinated cancer patients.
Abstract: A large number of cancer-associated gene products evoke immune recognition, but host reactions rarely impede disease progression. The weak immunogenicity of nascent tumors contributes to this failure in host defense. Therapeutic vaccines that enhance dendritic cell presentation of cancer antigens increase specific cellular and humoral responses, thereby effectuating tumor destruction in some cases. The attenuation of T cell activation by cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) further limits the potency of tumor immunity. In murine systems, the administration of antibodies that block CTLA-4 function inhibits the growth of moderately immunogenic tumors and, in combination with cancer vaccines, increases the rejection of poorly immunogenic tumors, albeit with a loss of tolerance to normal differentiation antigens. To gain a preliminary assessment of the biologic activity of antagonizing CTLA-4 function in humans, we infused a CTLA-4 blocking antibody (MDX-CTLA4) into nine previously immunized advanced cancer patients. MDX-CTLA4 stimulated extensive tumor necrosis with lymphocyte and granulocyte infiltrates in three of three metastatic melanoma patients and the reduction or stabilization of CA-125 levels in two of two metastatic ovarian carcinoma patients previously vaccinated with irradiated, autologous granulocyte–macrophage colony-stimulating factor-secreting tumor cells. MDX-CTLA4 did not elicit tumor necrosis in four of four metastatic melanoma patients previously immunized with defined melanosomal antigens. No serious toxicities directly attributable to the antibody were observed, although five of seven melanoma patients developed T cell reactivity to normal melanocytes. These findings suggest that CTLA-4 antibody blockade increases tumor immunity in some previously vaccinated cancer patients.

972 citations

Journal ArticleDOI
TL;DR: A cDNA encoding the CD2 antigen has been isolated by a highly efficient technique based on transient expression in COS cells and adherence of cells expressing surface antigen to antibody-coated dishes.
Abstract: A cDNA encoding the CD2 antigen has been isolated by a highly efficient technique based on transient expression in COS cells and adherence of cells expressing surface antigen to antibody-coated dishes. COS cells expressing a CD2 cDNA isolated by this method readily formed rosettes with sheep as well as human and other mammalian erythrocytes. Pretreatment of transfected COS cells with anti-CD2 antibody, or pretreatment of human erythrocytes with anti-LFA-3 antibody, abolished rosette formation.

971 citations

Journal ArticleDOI
TL;DR: Whether H-2 congenic lymphoid cells express minor histocompatibility determinants which cross-react at the cytotoxic T- cell level or the helper T-cell level is discussed.
Abstract: Cytotoxic effector T cells of F1 (BALB/c X BALB.B) (H-2d/b) mice immunized against the minor histocompatibility differences of C57BL/10 (H-2b) can lyse targets from C57BL/10, but cannot lyse B10.D2 (H-2d) targets. Despite this lack of cross-reaction in the cytotoxic assay, C57BL/10 cells do prime F1 (BALB/c X BALB.B) mice for a secondary cytotoxic response to B10.D2. C57BL/10-primed, B10.D2-boosted cytotoxic cells lyse B10.D2 targets but not C57BL/10 targets. DBA/2 (H-2d) spleen cells or thymocytes prime F1 mice for a secondary response to DBA/2, B10.D2, and C57BL/10 cells, but DBA/2 mastocytes, P815, do not prime for a response to C57BL/10. Whether H-2 congenic lymphoid cells express minor histocompatibility determinants which cross-react at the cytotoxic T-cell level or the helper T-cell level is discussed.

971 citations

Journal ArticleDOI
T. Lindmo1, E. Boven1, Frank Cuttitta1, J. Fedorko1, Paul A. Bunn1 
TL;DR: A binding assay for radiolabeled monoclonal antibodies in which the fraction of immunoreactive antibody is determined by linear extrapolation to conditions representing infinite antigen excess is developed.

971 citations


Network Information
Related Topics (5)
Antibody
113.9K papers, 4.1M citations
98% related
Immune system
182.8K papers, 7.9M citations
95% related
T cell
109.5K papers, 5.5M citations
94% related
Cytokine
79.2K papers, 4.4M citations
92% related
Cytotoxic T cell
92.4K papers, 4.7M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
20233,983
20225,279
20213,228
20203,444
20193,267