scispace - formally typeset
Search or ask a question
Topic

Antimicrobial peptides

About: Antimicrobial peptides is a research topic. Over the lifetime, 10645 publications have been published within this topic receiving 507688 citations. The topic is also known as: host defense peptide & antimicrobial protein.


Papers
More filters
Journal ArticleDOI
TL;DR: 18-mer LLKKK is the most potent of the peptide derivatives, with therapeutic potential for gram-negative bacterial endotoxin shock, and the LPS-neutralizing activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity.
Abstract: Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading microorganisms. Among these peptides, human cathelicidin CAP18/LL-37 (L(1) to S(37)) possesses not only potent antibacterial activity against gram-positive and gram-negative bacteria but also the ability to bind to gram-negative lipopolysaccharide (LPS) and neutralize its biological activities. In this study, to develop peptide derivatives with improved LPS-neutralizing activities, we utilized an 18-mer peptide (K(15) to V(32)) of LL-37 as a template and evaluated the activities of modified peptides by using the CD14(+) murine macrophage cell line RAW 264.7 and the murine endotoxin shock model. By replacement of E(16) and K(25) with two L residues, the hydrophobicity of the peptide (18-mer LL) was increased, and by further replacement of Q(22), D(26), and N(30) with three K residues, the cationicity of the peptide (18-mer LLKKK) was enhanced. Among peptide derivatives, 18-mer LLKKK displayed the most powerful LPS-neutralizing activity: it was most potent at binding to LPS, inhibiting the interaction between LPS and LPS-binding protein, and attaching to the CD14 molecule, thereby suppressing the binding of LPS to CD14(+) cells and attenuating production of tumor necrosis factor alpha (TNF-alpha) by these cells. Furthermore, in the murine endotoxin shock model, 18-mer LLKKK most effectively suppressed LPS-induced TNF-alpha production and protected mice from lethal endotoxin shock. Together, these observations indicate that the LPS-neutralizing activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity, and that 18-mer LLKKK is the most potent of the peptide derivatives, with therapeutic potential for gram-negative bacterial endotoxin shock.

161 citations

Journal ArticleDOI
TL;DR: Findings show that the V. cholerae RND efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse.
Abstract: Vibrio cholerae is a gram-negative human intestinal pathogen that causes the diarrheal disease cholera. Humans acquire cholera by ingesting V. cholerae-contaminated food or water. Upon ingestion, V. cholerae encounters several barriers to colonization, including bile acid toxicity and antimicrobial products of the innate immune system. In many gram-negative bacteria, resistance to the antimicrobial effects of these products is mediated by RND (resistance-nodulation-division) family efflux systems. In this study we tested the hypothesis that the V. cholerae RND efflux systems are required for antimicrobial resistance and virulence. The six V. cholerae genes encoding RND efflux pumps were deleted from the genome of the O1 El Tor strain N16961, resulting in the generation of 14 independent RND deletion mutants, including one RND-null strain. Determination of the antimicrobial susceptibilities of the mutants revealed that the RND efflux systems were responsible for resistance to multiple antimicrobial compounds, including bile acids, antimicrobial peptides, and antibiotics. VexB (VC0164) was found to be the RND efflux pump primarily responsible for the resistance of V. cholerae to multiple antimicrobial compounds in vitro. In contrast, VexD (VC1757) and VexK (VC1673) encoded efflux pumps with detergent-specific substrate specificities that were redundant with VexB. A strain lacking VexB, VexD, and VexK was attenuated in the infant mouse model, and its virulence factor production was unaffected. In contrast, a V. cholerae RND-null strain produced significantly less cholera toxin and fewer toxin-coregulated pili than the wild type and was unable to colonize the infant mouse. The decreased virulence factor production in the RND-null strain was linked to reduced transcription of tcpP and toxT. Our findings show that the V. cholerae RND efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse.

161 citations

Journal ArticleDOI
TL;DR: The key role of hBD is suggested in inflammatory responses by recruiting and activating mast cells, and increasing vascular permeability.
Abstract: Antimicrobial peptides human b-defensins (hBD) are mainly produced by epithelia of several organs including skin, and participate in innate immunity by killing invading pathogens Besides their microbicidal activities, hBD activate several inflammatory and immune cells Since hBD are generated by tissues where mast cells are present, we hypothesized that these peptides could activate mast cells In this study, we demonstrated that both hBD-3 and hBD-4 induced mast cell degranulation, prostaglandin D2 production, intracellular Ca 2+ mobilization and chemotaxis Furthermore, hBD-3- and hBD-4-induced activation of mast cells was suppressed by pertussis toxin and U-73122, inhibitors for G protein and phospholipase C, respectively We further revealed that hBD-3 and hBD-4 increased vascular permeability in the skin, which was dependent on the presence of mast cells, because hBD-3 and hBD-4 failed to enhance vascular permeability in mast cell-deficient Ws/Ws rats We also demonstrated that hBD-3 and hBD-4 induced phosphorylation of MAPK p38 and ERK1/2, which were further required for hBD-mediated mast cell activation, as evidenced by the inhibitory effects of p38 and ERK1/2 inhibitors on mast cell degranulation Together, these findings suggest the key role of hBD in inflammatory responses by recruiting and activating mast cells, and increasing vascular permeability

161 citations

Journal ArticleDOI
TL;DR: UV radiation exerts diverse effects on the immune system, suppressing the adaptive but inducing the innate immune response, which may explain why T-cell-mediated immune reactions are suppressed on UV exposure but not host defense reactions against bacterial attacks.
Abstract: Background Suppression of the adaptive immune system by UV radiation plays an important role in photocarcinogenesis. Exacerbation of skin infections has been proposed as a further consequence of UV-induced immunosuppression. Clinically bacterial infections are not a problem. For defense against bacteria, the innate immune response including the release of antimicrobial peptides is much more relevant than the adaptive immune response. Keratinocytes have the capacity to release antimicrobial peptides. Objective We asked whether UV radiation induces antimicrobial peptides in vitro and in vivo . Methods Antimicrobial peptide expression by normal human keratinocytes was measured by real-time PCR and fluorescence-activated cell sorting analysis. Biopsies taken from human volunteers and skin explants were studied with immunohistochemistry. Results Real-time PCR of normal human keratinocytes revealed a dose-dependent increase of human β-defensin-2, -3, ribonuclease 7, and psoriasin (S100A7) after UV radiation. This was confirmed at the protein level by intracellular fluorescence-activated cell sorting and in vitro immunofluorescence analysis. Immunohistochemistry of biopsies taken from healthy volunteers exposed to different UV radiation doses revealed enhanced epidermal expression of antimicrobial peptides after UV exposure. This was also confirmed by exposing human skin explants to UV radiation. Conclusion UV radiation exerts diverse effects on the immune system, suppressing the adaptive but inducing the innate immune response. This may explain why T-cell–mediated immune reactions are suppressed on UV exposure but not host defense reactions against bacterial attacks.

161 citations

Journal ArticleDOI
TL;DR: The first report of magainin-type polycationic antimicrobial peptides in scorpion venom is reported, which brings new insights into the mode of action of scorpions venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms.
Abstract: Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms.

161 citations


Network Information
Related Topics (5)
Immune system
182.8K papers, 7.9M citations
85% related
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Receptor
159.3K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023512
20221,025
2021809
2020844
2019728
2018634