scispace - formally typeset
Search or ask a question
Topic

Antimicrobial peptides

About: Antimicrobial peptides is a research topic. Over the lifetime, 10645 publications have been published within this topic receiving 507688 citations. The topic is also known as: host defense peptide & antimicrobial protein.


Papers
More filters
Journal ArticleDOI
TL;DR: This study provides further understanding of why α/β-peptide II is more toxic to micro-organisms with a high PE content in their membrane as well as for the lack of toxicity of α/ β- peptide I with these cells, emphasizing the potential importance of the lipid composition of the cell surface in determining selective toxicity of anti-microbial agents.

153 citations

Journal ArticleDOI
TL;DR: The data suggest a broad‐based innate host defense whereby potent antimicrobial peptides are present to prevent initial colonization by pathogenic microorganisms, and the recognition of bacteria coupled with a nascent inflammatory response can bolster this defense by a coordinated up‐regulation of the peptides.
Abstract: Antimicrobial peptides are a prevalent mechanism of host defense found throughout nature. In mammals, defensins are among the most abundant of these broad-spectrum antibiotics, and are expressed in epithelial and hematopoietic cells. The defensin peptides are especially abundant in neutrophils; however, gene expression is limited to the promyelocyte stage. In epithelial cells, defensin genes are found as both constitutively expressed and inducible. Induction has been observed in vitro by stimulation with bacterial lipopolysaccharide as well as inflammatory mediators. In vivo, up-regulation of several defensin genes occurs in both infectious and inflammatory states. Gene regulation occurs via signal transduction pathways common to other innate immune responses, utilizing transcription factors such as nuclear factor (NF)-kappaB and NF interleukin-6. Together, the data suggest a broad-based innate host defense whereby potent antimicrobial peptides are present to prevent initial colonization by pathogenic microorganisms. In addition, the recognition of bacteria coupled with a nascent inflammatory response can bolster this defense by a coordinated up-regulation of the peptides.

153 citations

Journal ArticleDOI
TL;DR: The results suggest that coordinated and compensatory amino acid replacements have occurred within the acidic propiece and cationic mature domain of hylid antimicrobial peptide precursors, as has been observed for mammalian defensin genes, but not among those of ranid precursor.
Abstract: Antimicrobial peptides are expressed in the skin of amphibians and are used to prevent infection by microorganisms. Frog species store distinct collections of antimicrobial peptides that show variation in size, charge, conformation, and bactericidal activity, and so the evolution of antimicrobial peptide gene families may reflect the adaptive diversification of these loci. We examined the molecular evolution of antimicrobial peptide transcripts from hylid and ranid frog species. Our results show that after the gene family arose in the common ancestor of the Hylidae and Ranidae, before the divergence of these families in the Mesozoic, it subsequently diversified within these groups with numerous duplication events and divergence of loci. Moreover, we provide evidence that suggests that members of the antimicrobial peptide gene family have been subject to diversifying selection within both propiece and mature domains of hylids and solely within the mature domain of ranids. Finally, our results suggest that coordinated and compensatory amino acid replacements have occurred within the acidic propiece and cationic mature domain of hylid antimicrobial peptide precursors, as has been observed for mammalian defensin genes, but not among those of ranid precursors.

152 citations

Journal ArticleDOI
30 Aug 2013-Mbio
TL;DR: This work shows that vancomycin-resistant enterococci (VRE) can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions.
Abstract: Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides. IMPORTANCE The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.

152 citations

Journal ArticleDOI
TL;DR: Clinical trials steps are defined and current status of several antimicrobial peptides under clinical development are described as well as briefly depict peptide drug formulation.
Abstract: Today microbial drug resistance has become a serious problem not only within inpatient setting but also within outpatient setting. Repeated intake and unnecessary usage of antibiotics as well as the transfer of resistance genes are the most important factors that make the microorganisms resistant to conventional antibiotics. A large number of antimicrobials successfully used for prophylaxis and therapeutic purposes have now become ineffective [1, 2]. Therefore, new molecules are being studied to be used in the treatment of various diseases. Some of these molecules are structural compounds based on a combination of peptides, for example, naturally occurring endogenous peptide antibiotics and their synthetic analogues or molecules designed de novo using QSAR (quantitative structureproperty relationships)-based methods [3]. Trying to exploit numerous advantages of antimicrobial peptides such as high potency and selectivity, broad range of targets, potentially low toxicity and low accumulation in tissues, pharmaceutical industry aims to develop them as commercially available drugs and appropriate clinical trials are being conducted [4]. In this paper we define clinical trials steps and describe current status of several antimicrobial peptides under clinical development as well as briefly depict peptide drug formulation.

152 citations


Network Information
Related Topics (5)
Immune system
182.8K papers, 7.9M citations
85% related
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Receptor
159.3K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023512
20221,025
2021809
2020844
2019728
2018634