scispace - formally typeset
Search or ask a question
Topic

Antimicrobial peptides

About: Antimicrobial peptides is a research topic. Over the lifetime, 10645 publications have been published within this topic receiving 507688 citations. The topic is also known as: host defense peptide & antimicrobial protein.


Papers
More filters
Journal ArticleDOI
TL;DR: There have been an increasing number of reports demonstrating that TLRs play a key role in cutaneous host defense mechanisms against bacterial, fungal, and viral pathogens.
Abstract: Toll-like receptors (TLRs) are important pattern-recognition receptors involved in host defense against a variety of pathogenic microorganisms. Activation of TLRs leads to the production of cytokines, chemokines, antimicrobial peptides, and upregulation costimulatory and adhesion molecules involved in innate and adaptive immune responses. TLRs are expressed on a variety of cell types found in the skin, including keratinocytes and Langerhans cells in the epidermis, resident and trafficking immune-system cells such as macrophages, dendritic cells, T and B cells, and mast cells in the dermis, endothelial cells of the skin microvasculature, and skin stromal cells such as fibroblasts and adipocytes. There have been an increasing number of reports demonstrating that TLRs play a key role in cutaneous host defense mechanisms against bacterial, fungal, and viral pathogens. In addition, TLRs have also been implicated in the pathophysiology of various inflammatory skin diseases.

141 citations

Journal ArticleDOI
TL;DR: The skin secretions of the North American pickerel frog Rana palustris are toxic to both microorganisms and predators and a total of 22 peptides with differential growth-inhibitory activity towards bacteria and yeast were isolated from the electrostimulated secretions and were characterized structurally.

141 citations

Journal ArticleDOI
TL;DR: It is determined whether these amphipathic helical cationic antimicrobial peptides cluster anionic lipids from zwitterionic ones and if this property is related to the species specificity of their toxicity, and all five of these peptides were capable of lipid clustering, in contrast to the well-studied magainin 2, which does not.
Abstract: Clustering of anionic lipids away from zwitterionic ones by cationic antimicrobial agents has recently been established as a mechanism of action of natural small, flexible peptides as well as non-natural synthetic peptide mimics. One of the largest classes of antimicrobial peptides consists of peptides that form cationic amphipathic helices on membranes and whose toxic action is dependent on the formation of pores in the membrane or through the "carpet" mechanism. We have evaluated the role of anionic lipid clustering for five of these peptides, i.e., MSI-78, MSI-103, MSI-469, MSI-843, and MSI-1254, with different sequences and properties. We determined whether these amphipathic helical cationic antimicrobial peptides cluster anionic lipids from zwitterionic ones and if this property is related to the species specificity of their toxicity. All five of these peptides were capable of lipid clustering, in contrast to the well-studied amphipathic helical antimicrobial peptide, magainin 2, which does not. We ascribe this difference to the lower density of positive charges in magainin 2. Peptides that efficiently cluster anionic lipids generally have a ratio of MIC for Staphylococcus aureus to that for Escherichia coli of >1. The addition of an N-terminal octyl chain did not preclude anionic charge clustering, although the ratio of MIC for S. aureus to that for E. coli was somewhat lowered. In most Gram-positive bacteria, there is a predominance of anionic lipids in the cytoplasmic membrane. In Gram-negative bacteria, however, clustering of anionic lipids away from zwitterionic ones is emerging as an important contributing mechanism of bacterial toxicity for some antimicrobial agents.

140 citations

Journal ArticleDOI
11 Dec 2015-PLOS ONE
TL;DR: The findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.
Abstract: Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.

140 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the intramolecular disulfide bonds of protegrins are required for their antiparallel beta-sheet conformation in membrane-mimetic environments and for their potent antimicrobial activity in media containing NaCl concentrations comparable to those found in serum and extracellular fluids.
Abstract: Protegrins are 2-kDa antimicrobial peptides that contain 16–18 amino acid residues and two intramolecular disulfide bonds. We studied the contribution of these disulfide bonds to the bactericidal activity of protegrins in physiological concentrations of NaCl by comparing protegrin PG-1 with variants that lacked one or both cysteine disulfides. Whereas the bactericidal and liposome-lytic properties of protegrin PG-1 were enhanced by adding 100 mM NaCl to the phosphate-buffered medium, NaCl addition strongly inhibited the effects of its linearized, disulfide-free variant, [A6, A8, A13, A15]protegrin-1. Whereas protegrin PG-1 manifested β-sheet structure by CD (circular dichroism) and ATR-FTIR (attenuated-total-reflectance-Fourier-transform-infrared) spectroscopy in buffer or membrane-mimetic environments, [A6, A8, A13, A15]protegrin-1 manifested disordered structure in phosphate buffer and α-helical characteristics in membrane-mimetic environments. Both single-disulfide protegrin variants, [A8, A13]protegrin-1 and [A6, A15]protegrin-1, assumed β-sheet conformations with liposomes that simulated bacterial membranes, and both retained substantial bactericidal activity when 100 mM NaCl was present. These findings demonstrate that the intramolecular disulfide bonds of protegrins are required for their antiparallel β-sheet conformation in membrane-mimetic environments and for their potent antimicrobial activity in media containing NaCl concentrations comparable to those found in serum and extracellular fluids.

140 citations


Network Information
Related Topics (5)
Immune system
182.8K papers, 7.9M citations
85% related
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Receptor
159.3K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023512
20221,025
2021809
2020844
2019728
2018634