scispace - formally typeset
Search or ask a question
Topic

Antimicrobial peptides

About: Antimicrobial peptides is a research topic. Over the lifetime, 10645 publications have been published within this topic receiving 507688 citations. The topic is also known as: host defense peptide & antimicrobial protein.


Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that, despite 40% sequence similarities, the dermaseptins have distinct spectra of anti-microbial activity and may act in concert to circumvent host invasion by providing frogs with a better shielding against a broad array of microorganisms.

267 citations

Journal ArticleDOI
TL;DR: This work focuses on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development and provides an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus.
Abstract: The rapid onset of resistance reduces the efficacy of most conventional antimicrobial drugs and is a general cause of concern for human well-being. Thus, there is great demand for a continuous supply of novel antibiotics to combat this problem. Bacteria-derived antimicrobial peptides (AMPs) have long been used as food preservatives; moreover, prior to the development of conventional antibiotics, these AMPs served as an efficient source of antibiotics. Recently, peptides produced by members of the genus Bacillus were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Bacillus-derived AMPs can be synthesized both ribosomally and nonribosomally and can be classified according to peptide biosynthesis, structure, and molecular weight. The precise mechanism of action of these AMPs is not yet clear; however, one proposed mechanism is that these AMPs kill bacteria by forming channels in and (or) disrupting the bacterial cell wall. Bacillus-derived AMPs have potential in the pharmaceutical industry, as well as the food and agricultural sectors. Here, we focus on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development. We also provide an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus, including several recently identified novel AMPs.

267 citations

Journal ArticleDOI
01 Jun 2008-Gut
TL;DR: Findings show that secreted antimicrobial peptides are retained by the surface-overlaying mucus and thereby provide a combined physical and antibacterial barrier to prevent bacterial attachment and invasion.
Abstract: Objectives: The intestinal mucosa is constantly exposed to a dense and highly dynamic microbial flora and challenged by a variety of enteropathogenic bacteria. Antibacterial protection is provided in part by Paneth cell-derived antibacterial peptides such as the α-defensins. The mechanism of peptide-mediated antibacterial control and its functional importance for gut homeostasis has recently been appreciated in patients with Crohn’s ileitis. In the present study, the spatial distribution of antimicrobial peptides was analysed within the small intestinal anatomical compartments such as the intestinal crypts, the overlaying mucus and the luminal content. Methods: Preparations from the different intestinal locations as well as whole mouse small intestine were extracted and separated by reversed-phase high-performance liquid chromatography. Antibacterial activity was determined in extracts, and the presence of antimicrobial peptides/proteins was confirmed by N-terminal sequencing, mass spectrometry analysis and immunodetection. Results: The secreted antibacterial activity was largely confined to the layer of mucus, whereas only minute amounts of activity were noted in the luminal content. The extractable activity originating from either crypt/mucus/lumen compartments respectively (given as a percentage) was for Listeria monocytogenes , 48 (4)/44 (4)/8 (8); Enterococcus faecalis , 44 (10)/49 (3)/7 (7); Bacterium megaterium , 56 (4)/42 (3)/2 (1); Streptococcus pyogenes , 48 (4)/46 (3)/6 (6); Escherichia coli , 46 (4)/47 (3)/7 (7); and Salmonella enterica sv. Typhimurium, 38 (3)/43 (7)/19 (10). A spectrum of antimicrobial peptides was identified in isolated mucus, which exhibited strong and contact-dependent antibacterial activity against both commensal and pathogenic bacteria. Conclusion: These findings show that secreted antimicrobial peptides are retained by the surface-overlaying mucus and thereby provide a combined physical and antibacterial barrier to prevent bacterial attachment and invasion. This distribution facilitates high local peptide concentration on vulnerable mucosal surfaces, while still allowing the presence of an enteric microbiota.

266 citations

Journal ArticleDOI
TL;DR: Understanding AMP structure-function relationship in the tethered conformation will enable rational improvements of immobilisation parameters and solve foreseeable challenges in the development of AMP-coated devices.

266 citations

Journal ArticleDOI
01 Jan 2003-BioDrugs
TL;DR: Antimicrobial peptides are attractive candidates for clinical development because of their selectivity, their speed of action and because bacteria may not easily develop resistance against them, but some strains of bacteria already have resistance.
Abstract: Many different types of organisms use antimicrobial peptides, typically 20–40 amino acids in length, for defence against infection. Most are capable of rapidly killing a wide range of microbial cells. They have been classified according to their active structures into six extensive groups. It is not yet clear how these peptides kill bacterial cells, but it is widely believed that some cationic antimicrobial peptides kill by disrupting bacterial membranes, allowing the free exchange of intra- and extra-cellular ions. The selectivity of these peptides appears to relate to differences between the external membranes of prokaryotic and eukaryotic cells. The action of the peptides may involve the formation of ‘barrel-stave’ or ‘torroidal’ pores, the introduction of packing defects in the membrane phospholipids, or large-scale disruption of the membrane by a very dense aggregation of parallel-oriented peptide, called the ‘carpet mechanism’.

266 citations


Network Information
Related Topics (5)
Immune system
182.8K papers, 7.9M citations
85% related
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Receptor
159.3K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023512
20221,025
2021809
2020844
2019728
2018634