scispace - formally typeset
Search or ask a question
Topic

Antimicrobial peptides

About: Antimicrobial peptides is a research topic. Over the lifetime, 10645 publications have been published within this topic receiving 507688 citations. The topic is also known as: host defense peptide & antimicrobial protein.


Papers
More filters
Journal ArticleDOI
TL;DR: The salmonellae PhoP/PhoQ regulators sense host environments to promote remodeling of the bacterial envelope and modified LPS promotes bacterial survival by increasing resistance to cationic antimicrobial peptides and by altered host recognition of LPS.

236 citations

Journal ArticleDOI
TL;DR: The present study suggests that partial D-amino acid substitution is a useful technique to improve the in vivo activity of antimicrobial peptides.

236 citations

Journal ArticleDOI
Mohamed Zaiou1
TL;DR: Recent literature is highlighted, showing that antimicrobial peptides are associated with several human conditions including infectious and inflammatory diseases, and to discuss current clinical development of peptide-based therapeutics for future use.
Abstract: Antimicrobial peptides have emerged as promising agents against antibiotic-resistant pathogens. They represent essential components of the innate immunity and permit humans to resist infection by microbes. These gene-encoded peptides are found mainly in phagocytes and epithelial cells, showing a direct activity against a wide range of microorganisms. Their role has now broadened from that of simply endogenous antibiotics to multifunctional mediators, and their antimicrobial activity is probably not the only primary function. Although antimicrobial peptide deficiency, dysregulation, or overproduction is not known to be a direct cause of any single human disease, numerous studies have now provided compelling evidence for their involvement in the complex network of immune responses and inflammatory diseases, thereby influencing diverse processes including cytokine release, chemotaxis, angiogenesis, wound repair, and adaptive immune induction. The purpose of this review is to highlight recent literature, showing that antimicrobial peptides are associated with several human conditions including infectious and inflammatory diseases, and to discuss current clinical development of peptide-based therapeutics for future use.

236 citations

Journal ArticleDOI
TL;DR: In this paper, the identification and cloning of numerous genes involved in the defense responses of plants following pathogen infection have resulted in the identification, cloning, and expression of several genes that express proteins, peptides, or antimicrobial compounds that are directly toxic to pathogens or that reduce their growth in situ.
Abstract: Recent applications of techniques in plant molecular biology and biotechnology to the study of host–pathogen interactions have resulted in the identification and cloning of numerous genes involved in the defense responses of plants following pathogen infection. These include: genes that express proteins, peptides, or antimicrobial compounds that are directly toxic to pathogens or that reduce their growth in situ; gene products that directly inhibit pathogen virulence products or enhance plant structural defense genes, that directly or indirectly activate general plant defense responses; and resistance genes involved in the hypersensitive response and in the interactions with avirulence factors. The introduction and expression of these genes, as well as of antimicrobial genes from nonplant sources, in a range of transgenic plant species have shown that the development of fungal pathogens can be significantly reduced. The extent of disease reduction varies with the strategy employed as well as with the char...

235 citations

Journal ArticleDOI
TL;DR: Interestingly, in contrast to S. aureus with its large arsenal of toxins developed for causing infection in the human host, most if not all “virulence factors” of S. epidermidis appear to have original functions in the commensal lifestyle of this bacterium.
Abstract: Staphylococcus epidermidis is the most important member of the coagulase-negative staphylococci and one of the most abundant colonizers of human skin. While for a long time regarded as innocuous, it has been identified as the most frequent cause of device-related infections occurring in the hospital setting and is therefore now recognized as an important opportunistic pathogen. S. epidermidis produces a series of molecules that provide protection from host defenses. Specifically, many proteins and exopolymers, such as the exopolysaccharide PIA, contribute to biofilm formation and inhibit phagocytosis and the activity of human antimicrobial peptides. Furthermore, recent research has identified a family of pro-inflammatory peptides in S. epidermidis, the phenol-soluble modulins (PSMs), which have multiple functions in immune evasion and biofilm development, and may be cytolytic. However, in accordance with the relatively benign relationship that S. epidermidis has with its host, production of aggressive members of the PSM family is kept at a low level. Interestingly, in contrast to S. aureus with its large arsenal of toxins developed for causing infection in the human host, most if not all “virulence factors” of S. epidermidis appear to have original functions in the commensal lifestyle of this bacterium.

235 citations


Network Information
Related Topics (5)
Immune system
182.8K papers, 7.9M citations
85% related
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Receptor
159.3K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023512
20221,025
2021809
2020844
2019728
2018634