scispace - formally typeset
Search or ask a question
Topic

Antioxidant Response Elements

About: Antioxidant Response Elements is a research topic. Over the lifetime, 250 publications have been published within this topic receiving 33408 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that Nrf2 is essential for the transcriptional induction of phase II enzymes and the presence of a coordinate transcriptional regulatory mechanism for phase II enzyme genes and the nrf2-deficient mice may prove to be a very useful model for the in vivo analysis of chemical carcinogenesis and resistance to anti-cancer drugs.

3,557 citations

Journal ArticleDOI
TL;DR: It is postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel NRF2 nuclear shuttling mechanism.
Abstract: Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

3,166 citations

Journal ArticleDOI
TL;DR: It is found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors.
Abstract: Transcription factor Nrf2 is a major regulator of genes encoding phase 2 detoxifying enzymes and antioxidant stress proteins in response to electrophilic agents and oxidative stress. In the absence of such stimuli, Nrf2 is inactive owing to its cytoplasmic retention by Keap1 and rapid degradation through the proteasome system. We examined the contribution of Keap1 to the rapid turnover of Nrf2 (half-life of less than 20 min) and found that a direct association between Keap1 and Nrf2 is required for Nrf2 degradation. In a series of domain function analyses of Keap1, we found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors. Indeed, Cullin 3 (Cul3), a subunit of the E3 ligase complex, was found to interact specifically with Keap1 in vivo. Keap1 associates with the N-terminal region of Cul3 through the IVR domain and promotes the ubiquitination of Nrf2 in cooperation with the Cul3-Roc1 complex. These results thus provide solid evidence that Keap1 functions as an adaptor of Cul3-based E3 ligase. To our knowledge, Nrf2 and Keap1 are the first reported mammalian substrate and adaptor, respectively, of the Cul3-based E3 ligase system.

1,908 citations

Journal ArticleDOI
TL;DR: The data suggest that the sequence, 5'-puGTGACNNNGC-3' 3'-pyCACTGNNNCG-5' where N is any nucleotide, represents the core sequence of the ARE required for transcriptional activation by phenolic antioxidants and metabolizable planar aromatic compounds.

1,404 citations

Journal ArticleDOI
TL;DR: It is shown that Nrf2 controls the expression of a group of electrophile- and oxidative stress-inducible proteins and activities, which includes heme oxygenase-1, A170, peroxiredoxin MSP23, and cystine membrane transport (system xc −) activity.

1,367 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
81% related
Apoptosis
115.4K papers, 4.8M citations
80% related
Phosphorylation
69.3K papers, 3.8M citations
79% related
Protein kinase A
68.4K papers, 3.9M citations
79% related
Inflammation
76.4K papers, 4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
202011
20196
201817
201715
201620