scispace - formally typeset
Search or ask a question
Topic

Aphid

About: Aphid is a research topic. Over the lifetime, 11380 publications have been published within this topic receiving 229721 citations. The topic is also known as: Aphidoidea & plant lice.


Papers
More filters
Journal ArticleDOI
TL;DR: Results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.
Abstract: As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.

133 citations

Journal ArticleDOI
TL;DR: Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale, suggesting the role of natural enemies in depressing aphids populations.
Abstract: Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

133 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the effects of milkweed genotype and ants on milkweed arthropods and found that ants increased Aphis abundance 59%, decreased Myzocallis abundance 52, and decreased predator abundance 56%.
Abstract: Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant‐tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight‐ to 18‐fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant‐aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant‐aphid in...

132 citations

Journal ArticleDOI
TL;DR: Vinson's division of the host selection process into habitat location, host location and host acceptance for both parasitoids and predators is used and what is known about the role of semiochemicals in aphid selection by natural enemies is reviewed.
Abstract: There is increasing evidence that chemical cues play a pivotal role in host selection by the natural enemies of aphids. We use Vinson's (1976) division of the host selection process into habitat location, host location and host acceptance for both parasitoids and predators and review what is known about the role of semiochemicals in aphid selection by natural enemies. For habitat location (i.e. detection of the host plant), volatiles emitted by plants after aphid attack have been described for a number of plant-aphid inter- actions. These synomones indicate not only the presence of an aphid host plant to the predator or parasitoid, but also the presence of aphids. Volatiles emitted from undamaged host plants are often attractive to aphid parasitoids, but less so for predators. Host location by the natural enemy on the food plant is guided by semiochemicals that mostly originate from the aphids, in particular aphid alarm pheromone, honeydew, or the smell of the aphid itself. Host acceptance is guided by contact chemicals for both predators and parasi- toids. In parasitoids, host recognition may be based on visual cues or on contact chemicals on the aphid's cuticle, whereas host acceptance is ultimately based on as yet unknown substances within the aphid's hemolymph. While it appears that many predators and parasitoids are attracted to the same semiochemicals, synergistic and antagonistic interactions among chemical substances have only rarely been investigated. More research into model systems is needed, not only to identify important semiochemicals, but also to determine their range of attraction. Recent progress in the development of analytical techniques has created new opportunities to improve our understanding of the chemical ecology of aphid-natural enemy interactions in the coming years.

132 citations

Journal ArticleDOI
TL;DR: Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method and could be useful in improving soybean aphid resistant genes by marker-assisted selection.
Abstract: The soybean aphid (Aphis glycines Matsumura) is an important pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. PI 567541B is a newly discovered aphid resistance germplasm with early maturity characteristics. The objectives of this study were to map and validate the aphid resistance genes in PI 567541B using molecular markers. A mapping population of 228 F3 derived lines was investigated for the aphid resistance in both field and greenhouse trials. Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method. These two QTLs were localized on linkage groups (LGs) F and M. PI 567541B conferred resistant alleles at both loci. An additive × additive interaction between these two QTLs was identified using the multiple interval mapping method. These two QTLs combined with their interaction explained most of the phenotypic variation in both field and greenhouse trials. In general, the QTL on LG F had less effect than the one on LG M, especially in the greenhouse trial. These two QTLs were further validated using an independent population. The effects of these two QTLs were also confirmed using 50 advanced breeding lines, which were all derived from PI 567541B and had various genetic backgrounds. Hence, these two QTLs identified and validated in this study could be useful in improving soybean aphid resistance by marker-assisted selection.

132 citations


Network Information
Related Topics (5)
Aphididae
5K papers, 92.1K citations
93% related
Parasitoid
5K papers, 120.9K citations
92% related
Integrated pest management
10.4K papers, 205.5K citations
89% related
Host (biology)
6.3K papers, 188.8K citations
89% related
Pest control
11K papers, 168.6K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023387
20221,082
2021337
2020393
2019373
2018382