scispace - formally typeset
Search or ask a question

Showing papers on "Aphididae published in 2014"


Journal ArticleDOI
TL;DR: The R81T point mutation was identified as an important mechanism of imidacloprid resistance in A. gossypii and suggested the absence of resistance mechanisms based on enhanced detoxification enzymes, such as cytochrome P450, esterase and glutathione S -transferase.

108 citations


Journal ArticleDOI
TL;DR: In this article, the authors report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber, that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV

99 citations


01 Jun 2014
TL;DR: It is concluded that CMV induces specific changes in a plant host that modify the alighting, settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spread of the virus.
Abstract: Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly,generally adapting to each type of virus?vector relationship in a way that enhances transmissionefficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant,cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypiiGlover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferousaphids changed their alighting, settling and probing behaviour activities over time when exposed toCMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate fromCMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), butshowed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min afterrelease. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected overmock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage andaphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph(EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of shortsuperficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (sec-ond hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much lesstime spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour includingan early increase in the number of short superficial probes and intracellular punctures followed by aphloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in aNP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting,settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spreadof the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NPmanner.

74 citations


Journal ArticleDOI
TL;DR: The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae.
Abstract: BACKGROUND The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. RESULTS A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. CONCLUSION The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35–40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry

72 citations


Journal ArticleDOI
TL;DR: Investigation of facultative symbiont species richness and prevalence among worldwide populations of the cowpea aphid, Aphis craccivora Koch finds that even when symbionts prevalence is relatively low, symbionT-associated phenotypic variation may allow population-level evolutionary responses to local selection.
Abstract: Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among worldwide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.

68 citations


Journal ArticleDOI
TL;DR: Tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction, and the potential of fungal pathogens as aphid-control agents is discussed.

61 citations


Journal ArticleDOI
TL;DR: Silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants, as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate.
Abstract: Despite the knowledge about the effects of silicon augmenting antibiosis and nonpreference of plants by apterous aphids, few studies exist on such effects with alate aphids. This study evaluated the effects of silicon fertilization on the biology of alate and apterous morphs of Sitobion avenae (F.) (Hemiptera: Aphididae), and the effect on nonpreference by S. avenae alates for wheat plants with or without silicon fertilization. A method for rearing aphids on detached leaves was evaluated comparing the biology of apterous aphids reared on wheat leaf sections and on whole plants with and without silicon fertilization. Because the use of detached leaves was a reliable method, the effect of silicon fertilization on the biology of apterous and alate S. avenae was assessed using wheat leaf sections. Biological data of aphids were used to calculate a fertility life table. Finally, the effect of silicon fertilization on the nonpreference of alate aphids was carried out for both vegetative and reproductive phases of wheat. Thirty alate aphids were released in the center of a cage, and the number of aphids per whole plant with or without silicon fertilization was observed. Silicon fertilization induced antibiosis resistance in wheat plants to apterous morphs as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate; however, alates were unaffected. Plants that received silicon fertilization had fewer alate aphids in both the vegetative and reproductive phases. Thus, silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants.

51 citations


Journal ArticleDOI
TL;DR: The results suggest that including the effects of fluctuating, extreme temperature events on aphid life history in population forecast models is likely to be of great importance to pest management decision‐making.
Abstract: Altered temperatures affect insects’ life history traits, such as development period and fecundity, which ultimately determine population growth rates. Understanding insects’ thermal biology is therefore integral to population forecasting and pest management decision‐making such as when to utilise crop spraying or biological control. Aphids are important crop pests in temperate regions, causing considerable yield losses. The aphid thermal‐biology literature is, however, heavily biased towards the effects of rising mean temperatures, whereas the effects of fluctuating, extreme climatic events (e.g., heat waves and sub‐zero cold periods) are largely overlooked. This study assessed the effects of laboratory‐simulated heat waves and sub‐zero cold periods on the survival, development period, and fecundity of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae: Microsiphini), in addition to assessing maternal effects on the birth weight and development period of the offspring of exposed individuals. Exposure to heat stress periods (total of 16 h at 30 °C) significantly reduced aphid fecundity and increased physiological development period (in day‐degrees) resulting in a reduced population growth rate. Cold exposure (total of 1.33 h at −15 °C) reduced population growth rate due to an elongated development period (in days), but did not affect fecundity or physiological development period (in day‐degrees). Both cold and heat stress significantly reduced aphid survival. Maternal experience of heat stress reduced nymphal birth weight although nymphal development period was not affected by either cold or heat stress. The results suggest that including the effects of fluctuating, extreme temperature events on aphid life history in population forecast models is likely to be of great importance to pest management decision‐making. The demonstration of maternal effects on birth weight also suggests that cross‐generational effects of heat waves on population growth rates could occur.

51 citations


Journal ArticleDOI
TL;DR: Although both top-down and bottom- up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.
Abstract: Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.

43 citations


Journal ArticleDOI
15 Jan 2014-PLOS ONE
TL;DR: It is found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation.
Abstract: Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

41 citations


Journal ArticleDOI
TL;DR: The results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission.
Abstract: We compared the settling preferences and reproductive potential of an oligophagous herbivore, the peaaphid,AcyrthosiphonpisumHarris(Hemiptera:Aphididae),inresponsetopeaplants,Pisumsativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham-inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile-to-monoterpeneratios. Timeuntilreproductivematuritywasmarginallyinfluencedbyplant infectionstatus,withatrendtowardearliernymphproductiononinfectedplants.Therewereconsistent age-specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV-infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV-infected plants. There was no clear pattern of agespecific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our resultsareconsistent withpredictionsofthehost manipulationhypothesis,extended toincludeplant viruses:non-viruliferousA. pisumpreferentially orient tovirus-infected host plants,potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.

Journal ArticleDOI
08 Jul 2014-PLOS ONE
TL;DR: Information can be used for developing phenological models based on the temperature and development rate relationships so that outbreaks of H. foeniculi in the fennel crop can be predicted, therefore improving the application of control programs targeting this fennels pest.
Abstract: The relationship between the insect development rate and temperature was established very early and represents an important ecological variable for modeling the population dynamics of insects. The accurate determination of thermal constant values and the lower and upper developmental thresholds of Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) on fennel (Foeniculum vulgare Miller (Apiales: Apiaceae)) crops would obviously benefit the effective application of control measures. This paper is a study of the biology and thermal requirements of H. foeniculi. Winged insects were collected from fennel crops at the Embrapa Algodao in Campina Grande, Paraiba. Nymphs (age ≤24 h) produced by winged insects were subjected to constant temperatures of 15, 20, 25, 28, 30 or 33°C, a photophase of 12 h and a relative humidity of 70±10%. The results of the study showed that at temperatures between 15 and 30°C, H. foeniculi nymphs were able to develop normally. The four instars were found at all temperatures tested. However, temperatures of 3 and 33°C were lethal to the nymphs. The nymph stage development time varied from 5 (30°C) to 19 (15°C) days. The influence of temperature on the development time is dependent on the instar. The base temperature (Tb) and the thermal constant (K) for the nymph stage were estimated at 11.2°C and 107.5 degree-days, respectively. The shortest nymph development stage was observed at 30°C, and the highest nymph viability (85.0%) was observed at 28°C. This information can be used for developing phenological models based on the temperature and development rate relationships so that outbreaks of H. foeniculi in the fennel crop can be predicted, therefore improving the application of control programs targeting this fennel pest.

Journal ArticleDOI
TL;DR: The results showed that M. persicae‐infested host plants emitted volatiles that could inhibit the colonization by B. tabaci and also attract natural enemies of both aphids and whiteflies, which may need to be considered further for optimizing pest management methods.
Abstract: An in-depth understanding of plant-mediated interactions between herbivores and their natural enemies is essential in community ecology and co-evolution, and for developing sustainable pest management strategies. The influence of Myzus persicae (Sulzer) (Hemiptera: Aphididae)-induced tomato plant [Solanum lycopersicum L. (Solanaceae)] volatile compounds on the olfactory responses of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), three predator species [Coccinella septempunctata L., Propylea japonica (Mulstant) (both Coleoptera: Coccinellidae), and Orius sauteri (Poppius) (Hemiptera: Anthocoridae)], two whitefly parasitoid species [Encarsia formosa (Gahan) and Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae)], and one aphid parasitoid species [Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae)] were examined in two-choice tests using a four-arm olfactometer. Tomato plants were experimentally manipulated for aphid density, duration of aphid feeding, and interval between aphid removal and the behavioral test. We also compared the systemic effects of aphid feeding on the olfactory behavior of whiteflies and natural enemies according to three relative leaf positions: the aphid-infested leaf itself and two adjacent leaves (above and below). Bemisia tabaci were deterred by the odors of the leaves infested with aphids in all treatments. All six natural enemies were attracted to the leaves infested with aphids. Bemisia tabaci deterrence by volatiles was greater for leaves at the highest aphid density, and with increasing duration of exposure to aphid feeding. In contrast, the attraction to leaves was greater for the three parasitoids than for the three predators both with increasing aphid density and increasing duration of plant exposure to aphids. There was no significant influence of leaf position on preference of B. tabaci, the two species of lady beetles, and the aphid parasitoid. The two Encarsia species were attracted to the leaf above the aphid-infested leaves, indicating that systemic volatiles were released by adjacent leaves. On the other hand, O. sauteri was only attracted by the aphid-infested leaf itself. Our results showed that M. persicae-infested host plants emitted volatiles that could inhibit the colonization by B. tabaci and also attract natural enemies of both aphids and whiteflies. The results of this study may need to be considered further for optimizing pest management methods.

Journal ArticleDOI
TL;DR: The results indicate that the combined effects of both elevated temperature and CO2 on aphid biology may exacerbate aphid damage on barley under the climate change in accompany with elevated temperatureand CO2 level.
Abstract: Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated temperature (+4 degrees C). The elevated CO2 (700-750 microl/liter) reduced only the development time of fourth-instar nymph. The overall duration of nymphal stage was reduced in the second generation. Thus, the temperature was the dominant factor to development duration of corn leaf aphid. The fecundity of corn leaf aphid was significantly increased under the elevated temperature and CO2, as well as in the later generation. Elevated temperature and CO2 increased the number of alate production, which may enhance the aphid migration or dispersal and the spread of plant viruses. Corn leaf aphid had the highest intrinsic rate of increase under the elevated temperature and CO2 combination in the second generation. These results indicate that the combined effects of both elevated temperature and CO2 on aphid biology may exacerbate aphid damage on barley under the climate change in accompany with elevated temperature and CO2 level.

Journal Article
TL;DR: The neem-based formulations tested were highly effective in suppressing aphid population, but did not act as an efficient repellent at standard application rates, and while suppressing feeding, were not able to completely inhibit food intake.
Abstract: *Corresponding Author Email: hail@just.edu.jo Tel.:+962-799906744 The effects of three commercial neem-based formulations, namely Azatrol (1.2% Azadiractin A and B), Triple Action Neem Oil (70% neem oil) and Pure Neem Oil (100% neem oil), were evaluated on the green peach aphid, Myzus persicae, under both laboratory and greenhouse conditions. A leaf disc choice test bioassay demonstrated that none of the formulated neem-based insecticides tested were repellent to green peach aphid at recommended concentrations, but a two-fold increase in the concentration of Azatrol and Triple Action Neem Oil elicited a 50% reduction in the number of aphids settling on treated leaf tissue in comparison with untreated leaf tissue. When aphids were fed foliage containing neem-based insecticides, the rates of honeydew excretion were significantly reduced, to 14-40% of the control, thus demonstrating feeding deterrence. Azatrol also functioned well systemically when applied via the roots, resulting in 50% decrease in the feeding activity of treated aphids compared to that of the controls. Greenhouse evaluation of these products at the recommended concentrations revealed that aphid colonization was reduced to 50-75% of the control one week after neem-based products were applied as a foliar spray, while almost total elimination of aphids was observed by Pure Neem Oil and Azatrol treatments when a second application of these chemicals was applied to the foliage at seven days following the first spray. Results indicate that the neem-based formulations tested were highly effective in suppressing aphid population, but did not act as an efficient repellent at standard application rates, and while suppressing feeding, were not able to completely inhibit food intake.

Journal ArticleDOI
TL;DR: It was shown that cowpea aphid performed differently on the whole plant as compared with detached leaves, and the detached-leaf biological assay is recommended for future experiments because it is more accurate and efficient and it produces reliable data.
Abstract: The performance of cowpea aphid, Aphis craccivora Koch. (Hemiptera: Aphididae), on five faba bean, Vicia faba L. (Fabales: Fabaceae) cultivars was evaluated. Colony development, biology, and demographic parameters were studied to measure the cowpea aphid performance. Two methods, whole plant and detached leaf, were used in these experiments. After 14 d , the number of apterous adult, nymphs, and total cowpea aphids were significantly lower in cultivar Gazira2 and highest on cultivar Misr1. Assuming that low aphid numbers per plant represented high resistance, the order of resistant cultivars was as follows: Gazira2 > Misr > Giza3 Improved > Goff1 > Misr1. Aphid infestation significantly inhibited plant growth compared with uninfested plants, as indicated by factorial analysis using plant height ( F = 41.38, P < 0.0001). The detached-leaf biological assay showed that the cultivar Gazira2 was less suitable than Misr1 because it had longer prereproductive, reproductive, and post reproductive periods, longer total longevity, and lower number of progeny. Similarly, demographic parameters also justified the suggested lower suitability of Gazira2 compared with Misr1, indicated by significantly lower net reproduction rate, intrinsic rate of increase, finite rate of increase, but longer generation time and doubling time on Gazira2. It was shown that cowpea aphid performed differently on the whole plant as compared with detached leaves. The detached-leaf biological assay is recommended for future experiments because it is more accurate and efficient and it produces reliable data.

Journal ArticleDOI
08 Apr 2014-PLOS ONE
TL;DR: The effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var.
Abstract: Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

Journal ArticleDOI
TL;DR: The differences in peroxidase activity observed between infested and control V3 stage KS4202 plants at these two time points suggest that peroxIDases may be playing multiple roles in the tolerant plant.
Abstract: Changes in protein content, peroxidase activity, and isozyme profiles in response to soybean aphid feeding were documented at V1 (fully developed leaves at unifoliate node, first trifoliate leaf unrolled) and V3 (fully developed leaf at second trifoliate node, third trifoliate leaf unrolled) stages of soybean aphid-tolerant (KS4202) and -susceptible (SD76R) soybeans. Protein content was similar between infested and control V1 and V3 stage plants for both KS4202 and SD76R at 6, 16, and 22 d after aphid introduction. Enzyme kinetics studies documented that control and aphid-infested KS4202 V1 stage and SD76R V1 and V3 stages had similar levels of peroxidase activity at the three time points evaluated. In contrast, KS4202 aphid-infested plants at the V3 stage had significantly higher peroxidase activity levels than control plants at 6 and 22 d after aphid introduction. The differences in peroxidase activity observed between infested and control V3 stage KS4202 plants at these two time points suggest that peroxidases may be playing multiple roles in the tolerant plant. Native gels stained for peroxidase were able to detect differences in the isozyme profiles of aphid-infested and control plants for both KS4202 and SD76R.

Journal ArticleDOI
TL;DR: In this article, comparative proteomics was used to identify protein expression differences associated with virulence of Schizaphis graminum biotype H relative to other biotypes and found that proteins involved in the tricarboxylic acid cycle, immune system, cell division, and anti-apoptosis pathways were upregulated in biotypeH relative with other b...
Abstract: Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort developing aphid-resistant, small-grain varieties to limit insecticide control of the greenbug, Schizaphis graminum. However, new S. graminum biotypes frequently emerge that break resistance. Mechanisms of virulence on the aphid side of the plant–insect interaction are not well understood. S. graminum biotype H is highly virulent on most small grain varieties. This characteristic makes biotype H ideal for comparative proteomics to investigate the basis of biotype virulence in aphids. In this study, we used comparative proteomics to identify protein expression differences associated with virulence. Aphid proteins involved in the tricarboxylic acid cycle, immune system, cell division, and antiapoptosis pathways were found to be up-regulated in biotype H relative to other b...

Journal ArticleDOI
TL;DR: These studies are the first attempt to analyze the categories of resistance in switchgrass and provide critical information for characterizing the biological mechanisms of resistance and improving the knowledge of the plant–insect interactions within this system.
Abstract: Switchgrass, Panicum virgatum L., has been targeted as a bioenergy feedstock. However, little is currently known of the mechanisms of insect resistance in this species. Here, two no-choice studies were performed to determine the categories (antibiosis and tolerance) and relative levels of resistance of three switchgrass populations (Kanlow–lowland ecotype, Summer–upland ecotype, and third generation derivatives between Kanlow × Summer plants, K×S) previously identified with differential levels of resistance to the greenbug, Schizaphis graminum (Rondani), and yellow sugarcane aphid, Sipha flava (Forbes). No-choice studies indicated that Kanlow possessed multi-species resistance, with high levels of antibiosis to both aphid species, based on aphid survival at 7 and 14 days after aphid introduction and cumulative aphid days, while K×S possessed low-to-moderate levels of antibiosis to S. flava. Further, functional plant loss indices based on plant height and biomass indicated that tolerance is an important category of resistance for Summer plants to S. graminum. These studies also indicated that Summer lacks both tolerance and antibiosis to S. flava, relative to the other switchgrasses tested, whereas K×S lack tolerance and antibiosis to S. graminum. These studies are the first attempt to analyze the categories of resistance in switchgrass and provide critical information for characterizing the biological mechanisms of resistance and improving our knowledge of the plant–insect interactions within this system.

Journal ArticleDOI
TL;DR: The high level of asexual reproduction in P. nigronervosa could be linked to the presence of Wolbachia, but its prevalence also suggests that this symbiotic bacterium could play a more essential role in its aphid host.
Abstract: Aphids are known to live in symbiosis with specific bacteria called endosymbionts that have positive or negative impacts on their hosts. In this study, six banana aphid (Pentalonia nigronervosa Coquerel) strains from various geographical origins (Gabon, Madagascar, and Burundi) were screened to determine their symbiotic content, using complementary genomic (16S rDNA sequencing and specific polymerase chain reaction) and proteomic (two-dimensional difference gel electrophoresis coupled with protein identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) approaches. Despite the geographical heterogeneity, the combined methods allowed us to identify the same two symbionts in the six aphids strains tested: Buchnera aphidicola and Wolbachia. Although B. aphidicola is found in almost all aphid species, the systematic presence of Wolbachia in banana aphids is particularly interesting, as this bacterium usually has a low prevalence in aphid species. Phylogenetic analyses showed that the Wolbachia sp. strain found in P. nigronervosa was very similar to the strain present in aphids of the genus Cinara, known to have developed a strong and long-term symbiotic association with Wolbachia. The high level of asexual reproduction in P. nigronervosa could be linked to the presence of Wolbachia, but its prevalence also suggests that this symbiotic bacterium could play a more essential role in its aphid host.

Journal ArticleDOI
TL;DR: The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions.
Abstract: The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were significantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions.

Journal ArticleDOI
TL;DR: Comparing the plant damage caused by all the eight known Russian wheat aphid biotypes and the results indicated that the five main biotypes RWA1, RWA2, Rwa3/7, R WA6, and RWA8 can be identified using only four wheat genotypes containing Dn1 to Dn9.
Abstract: Eight biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov), have been discovered in the United States since 2003. Biotypes are identified by the distinct feeding damage responses they produce on wheat carrying different Russian wheat aphid resistance genes, namely, from Dn1 to Dn9. Each Russian wheat aphid biotype has been named using plant damage criteria and virulence categories that have varied between studies. The study was initiated to compare the plant damage caused by all the eight known Russian wheat aphid biotypes, and analyze the results to determine how Russian wheat aphid virulence should be classified. Each Russian wheat aphid biotype was evaluated on 16 resistant or susceptible cereal genotypes. Plant damage criteria included leaf roll, leaf chlorosis, and plant height. The distribution of chlorosis ratings followed a bimodal pattern indicating two categories of plant responses, resistant or susceptible. Correlations were significant between chlorosis ratings and leaf roll (r(2) = 0.72) and between chlorosis ratings and plant height (r(2) = 0.48). The response of 16 cereal genotypes to feeding by eight Russian wheat aphid biotypes found RWA1, RWA2, RWA6, and RWA8 to differ in virulence, while Russian wheat aphid biotypes RWA3, RWA4, RWA5, and RWA7 produced similar virulence profiles. These biotypes have accordingly been consolidated to what is hereafter referred to as RWA3/7. Our results indicated that the five main biotypes RWA1, RWA2, RWA3/7, RWA6, and RWA8 can be identified using only four wheat genotypes containing Dn3, Dn4, Dn6, and Dn9.

Journal ArticleDOI
TL;DR: The results indicated that the population dynamics of the soybean aphid followed a unimodal curve distribution, with the insect generally colonizing soybean fields from the middle of June toEarly July and the population reaching a peak between early July and early August.
Abstract: The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is an important pest of soybean in China To monitor and manage this pest effectively it is necessary to understand its population dynamics and demographics, as well as the physiological responses of soybean plants to its feeding In this study, using field surveying and suction-trap monitoring, we investigated the population dynamics of the soybean aphid in Xiuyan County, Liaoning Province in northeastern China during 2009-2012 The results indicated that the population dynamics of the soybean aphid followed a unimodal curve distribution, with the insect generally colonizing soybean fields from the middle of June to early July and the population reaching a peak between early July and early August On the whole, soybean aphids occurred in suction-traps at least 2 weeks earlier than they were found in field surveys A total of 72 alates were collected by suction-trapping over the 4 years, with the earliest alate captures occurring on 28 May in 2009, 2011, 2012 and 4 June in 2010 The life table parameters clearly showed that this aphid had a short doubling time (473 ± 021 days), and 736 ± 098 nymphs were produced by a soybean aphid adult during its lifetime (1357 ± 030 days) Finally, biochemical assays indicated that the amount of malondialdehyde and the activities of four defense-related enzymes in soybean leaves significantly changed between 0 day and 7 days of aphid infestation Polyphenol oxidase (PPO) and catalase (CAT) activities increased more dramatically after 1 day of aphid feeding In addition, significantly higher levels of superoxide dismutase and CAT were found after aphid feeding for 7 days, whereas there was no significant change in the activities of peroxidase and PPO Consequently, this study will be beneficial in determining the seasonal occurrence of the soybean aphid and selecting insect-resistant soybean varieties, and thus in developing a theoretical framework for appropriate management strategies

Journal ArticleDOI
14 Nov 2014
TL;DR: Investigation of vector activity of one potato colonising aphid, M. euphorbiae, and two non-colonising potato aphids confirmed the involvement of A. pisum and R. padi in the spread of non-persistent viruses.
Abstract: SummaryViral diseases non-persistently transmitted by aphids are of great economic importance in several annual crops. Transmission efficiency of these non-persistent phytoviruses is dependant on vector efficiency (i.e. vector intrinsic ability to transmit the virus) but also on the vector activity that implies the early steps of aphid host plant selection process (i.e. brief intracellular stylet punctures after landing) and to their interplant movement ability. In Europe, Macrosiphum euphorbiae (Thomas 1878) is considered as one of the most serious virus vectors on potato (Solanum tuberosum L. 1753). Nevertheless, several alate aphid species that do not colonise potato plants are trapped in potato crops. Therefore, we investigated, through laboratory experiments, vector activity of one potato colonising aphid, M. euphorbiae, and two non-colonising potato aphids, the bird cherry-oat aphid Rhopalosiphum padi (L. 1758) and the pea aphid Acyrthosiphon pisum (Harris 1776). A settling experiment was used to ev...

Journal ArticleDOI
TL;DR: Aspergillus species could be useful in aphid control as pest control agents despite their saprophytic lifestyle, and is to the authors' knowledge the first report of A. clavatus and A. flavus strains pathogenic to aphids.
Abstract: Aphids (Homoptera: Aphididae) are sap-sucking insect pests that feed on several plants of agronomical importance. Entomopathogenic fungi are valuable tools for potential aphid control. As part of a selection process, laboratory bioassays were carried with five different concentrations of Aspergillus clavatus (Desmazieres), Aspergillus flavus (Link) and Metarhizium anisopliae ((Metschnikoff) Sorokin) spores against the pea aphid, Acyrthosiphon pisum (Harris). Aspergillus isolates induced higher mortalities than M. anisopliae, which is a well-known entomopathogen in the literature. Lethal concentrations (LC50 and LC90) were 1.23 × 103 and 1.34 × 107 spores/ml for A. flavus, 4.95 × 102 and 5.65 × 107 spores/ml for A. clavatus, and 3.67 × 103 and 9.71 × 107 spores/ml for M. anisopliae 5 days after treatment. Mycelia development and sporulation on adult cadavers were observed 48 h after incubation. The intrinsic growth rate of A. pisum decreased with increased spore concentration for all fungal strains, suggesting an increase in pathogen fitness related to a consumption of host resources. In conclusion, Aspergillus species could be useful in aphid control as pest control agents despite their saprophytic lifestyle. This is also to our knowledge the first report of A. clavatus and A. flavus strains pathogenic to aphids.

Journal ArticleDOI
TL;DR: Whereas total reliance on biological control for hop aphid is unlikely to be successful, there appears to be unrealized potential for biological control of spider mites in commercial production.
Abstract: The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch, and hop aphid, Phorodon humuli (Schrank), in a new planting of hop in Oregon is described over a period of 9 yr (2005–2013). Both the abundance and diversity of natural enemies increased over time. Known predators of hop aphid (Coccinellidae and Anthocoridae) were present in all years; however, stable biological control of hop aphid was not achieved in most years and aphicides were required to suppress populations at commercially acceptable levels in 5 of 9 yr. Populations of aphidophagous coccinellids developed synchronously with hop aphid populations, and temporal correlations indicated these are the primary predatory insect associated with hop aphid regulation. However, sampling methods did not assess levels of aphid parasitoids and hyperparasitoids and their contribution to biological control was unquantified. Spider mite biological control was associated primarily with predatory mites (Phytoseiidae) and Stethorus spp. (Coccinellidae). The magnitude of temporal correlations of abundance of these predators with spider mites was found to be greatest on the same sampling dates and at lags of 7–14 d. Stable biological control of spider mites occurred after four field seasons, suppressing spider mites to levels similar to those commonly achieved with chemical control. A survey of 11 commercial hop yards in Oregon documented pest and natural enemy densities under commercial management practices over a period of 4 yr (2008–2011). Natural enemy abundance in commercial hop yards was similar to that of a 2- to 3-yr-old hop yard with limited disturbance. Whereas total reliance on biological control for hop aphid is unlikely to be successful, there appears to be unrealized potential for biological control of spider mites in commercial production. Dynamic action thresholds that consider the value of natural enemies are needed for both pests.

Journal ArticleDOI
TL;DR: The results indicated that the application of cultivars affecting adult reproductive parameters could be a good solution to cabbage aphid control management.
Abstract: In this article, the biology and fertility life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), were studied on cauliflower leaves, Brassica oleracea var. botrytis (Brassicales: Brassicaceae), of the cultivars Smilla, Snow mystique, White cloud, Buris, Galiblanka, Snow crown, SG, and Tokita. This study was conducted under controlled conditions: 25 ± 2°C, 65 ± 5% relative humidity (RH), and 16:8 (L:D) h photoperiods. Statistical analysis showed that there was a significant difference ( P < 0.05) between the different growth stages and the mean number of laid nymphs. Further, the maximum and minimum growth periods were observed on Galiblanka and Buris cultivars, respectively. The shortest nymphal instar growth period was observed on the Smilla cultivar (6.70 d), and the longest lifespan was seen on the White cloud (8.10 d). The Smilla cultivar (39%), in an adult emergence stage, and the SG (88%) revealed the lowest and highest rates of survival, respectively. Aphids reared on the Smilla cultivar were found to have increased due to the high intrinsic ( r m) and finite (λ) rate of increase and the low doubling time (DT). The results indicated that the application of cultivars affecting adult reproductive parameters could be a good solution to cabbage aphid control management.

Journal Article
TL;DR: The preservation of the cotton aphid's natural enemies could be an ecologically sustainable method of maintaining the aphid population below threshold level.
Abstract: Cotton aphid (Aphis gossypii) is a key pest of cotton crop. The indiscriminate use of insecticides and pesticides during 1930's and latter to control insects pests, developed resistance in cotton aphid against these chemicals resulting in outbreak of this pest. Cotton aphid has a major impact on quality and yield of cotton which emphasizes the need to manage this notorious pest. The main goal of this review is to highlight various strategies viz., biological, chemical and cultural control for cotton aphid management. The selection of suitable control strategy is made on by viewing the severity of cotton aphid outbreak. Furthermore, the role of transgenic crops in lowering cotton aphid population is also described. However, the preservation of the cotton aphid's natural enemies could be an ecologically sustainable method of maintaining the aphid population below threshold level. Keywords: Sustainability; Integrated pest management; Predator-prey population; Host feeding

Journal ArticleDOI
TL;DR: Results show that single dominant gene action at the Rag2 region may be a major source for aphid resistance in the USDA soybean germplasm collection.
Abstract: The Rag2 region was frequently identified among 21 F 2 populations evaluated for soybean aphid resistance, and dominant gene action and single-gene resistance were also commonly identified. The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests of soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1–rag4) have been discovered since the pest was identified in the USA in 2000. The objective of this research was to determine whether resistance expression in recently identified soybean aphid-resistant plant introductions (PIs) was associated with the four Rag loci using a collection of 21 F2 populations. The F2 populations were phenotyped with soybean aphid biotype 1, which is avirulent on plants having any of the currently identified Rag genes, using choice tests in the greenhouse and were tested with genetic markers linked to the four Rag loci. The phenotyping results indicate that soybean aphid resistance is controlled by a single dominant gene in 14 PIs, by two genes in three PIs, and four PIs had no clear Mendelian inheritance patterns. Genetic markers flanking Rag2 were significantly associated with aphid resistance in 20 PIs, the Rag1 region was significantly identified in five PIs, and the Rag3 region was identified in one PI. These results show that single dominant gene action at the Rag2 region may be a major source for aphid resistance in the USDA soybean germplasm collection.