scispace - formally typeset
Search or ask a question
Topic

Aphididae

About: Aphididae is a research topic. Over the lifetime, 5036 publications have been published within this topic receiving 92167 citations. The topic is also known as: the aphids.


Papers
More filters
Journal ArticleDOI
TL;DR: The ET developed here is strongly supported through soybean growth stage R5, which provides a 7-d lead time before aphid populations are expected to exceed the economic injury level (EIL) and exposes a larger portion of the soybean aphid population to selection by insecticides, which could lead to development of insecticide resistance.
Abstract: Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), reached damaging levels in 2003 and 2005 in soybean, Glycine max (L.) Merrill, in most northern U.S. states and Canadian provinces, and it has become one of the most important pests of soybean throughout the North Central region. A common experimental protocol was adopted by participants in six states who provided data from 19 yield-loss experiments conducted over a 3-yr period. Population doubling times for field populations of soybean aphid averaged 6.8 d ± 0.8 d (mean ± SEM). The average economic threshold (ET) over all control costs, market values, and yield was 273 ± 38 (mean ± 95% confidence interval [CI], range 111–567) aphids per plant. This ET provides a 7-d lead time before aphid populations are expected to exceed the economic injury level (EIL) of 674 ± 95 (mean ± 95% CI, range 275–1,399) aphids per plant. Peak aphid density in 18 of the 19 location-years occurred during soybean growth stages R3 (beginning pod formation) to R5 (full size pod) with a single data set having aphid populations peaking at R6 (full size green seed). The ET developed here is strongly supported through soybean growth stage R5. Setting an ET at lower aphid densities increases the risk to producers by treating an aphid population that is growing too slowly to exceed the EIL in 7 d, eliminates generalist predators, and exposes a larger portion of the soybean aphid population to selection by insecticides, which could lead to development of insecticide resistance.

375 citations

Journal ArticleDOI
01 Jan 2003-Ecology
TL;DR: The model supports the additivity of parasitoid and predator effects on aphid suppression but suggests that longer-term experiments would likely reveal nonadditive effects as predation removes parasitoids whose response to aphid densities occurs with a delay.
Abstract: Most biological control systems involve a diverse community of natural enemies. We investigated how specialist and generalist natural enemies differ as biological control agents of pea aphids (Acyrthosiphon pisum), and how interactions among natural enemies affect successful control. In alfalfa, pea aphids are attacked by a specialist parasitoid wasp, Aphidius ervi, and a guild of generalist predators primarily made up of Nabis and Orius bugs, coccinellid and carabid beetles, and web-building spiders. In three field experiments, we manipulated the parasitoid, then the generalist predator guild, and finally both classes of natural enemy, and recorded resulting impacts on pea aphid population control. The parasitoid caused little immediate reduction in aphid population growth but caused a large decline after a delay corresponding to the generation time of the parasitoid. In contrast, the generalist guild caused an immediate decline in the aphid population growth rate. However, the generalists did not exert density-dependent control, so aphid densities continued to increase throughout the experiment. The third field experiment in which we simultaneously manipulated parasitoids and predators investigated the possibility of “nonadditive effects” on aphid control. Densities of parasitoid pupae were 50% lower in the presence of generalist predators, indicating intraguild predation. Nonetheless, the ratio of parasitoids to aphids was not changed, and the impact of the two types of natural enemies was additive. We constructed a stage-structured model of aphid, parasitoid, and predator dynamics and fit the model to data from our field experiments. The model supports the additivity of parasitoid and predator effects on aphid suppression but suggests that longer-term experiments (32 d rather than 20 d) would likely reveal nonadditive effects as predation removes parasitoids whose response to aphid densities occurs with a delay. The model allowed us to explore additional factors that could influence the additivity of parasitoid and predator effects. Aphid density-dependent population growth and predator immigration in response to aphid density would likely have little influence on the additivity between parasitism and predation. However, if a parasitoid were to show a strong Type II functional response, in contrast to A. ervi whose functional response is nearly Type I, interactions with predators would likely be synergistic. These analyses reveal factors that should be investigated in other systems to address whether parasitism and predation act additively on host densities. Corresponding Editor: E. Evans.

352 citations

Journal ArticleDOI
TL;DR: The integrated pest management challenges presented by the aphid require a deeper understanding of its biology as it adapts to North America.
Abstract: Soybean aphid, Aphis glycines Matsumura, a native of eastern Asia, was first discovered in North America in July 2000 in Wisconsin and subsequently in a total of 10 North Central U.S. states by September 2000. Currently, soybean aphid has spread to 20 U.S. states and three Canadian provinces, putting >60 million acres of soybean at risk to crop injury caused by this exotic insect. The life history of this species has been studied by a number of entomologists and crop protection specialists, and here we provide a summary of the observations made by ourselves and our colleagues. The soybean aphid has been observed at all stages of a heterecious holocyclic life cycle and seems to be adapting to a large geographic area of the North Central United States. Soybean aphid uses native and exotic primary hosts found in North America, specifically Rhamnus cathartica L. and Rhamnus alnifolia L’Her. The aphid’s principal secondary host is soybean, Glycine max (L.) Merr., but there seems to be a lengthy gap in...

344 citations

Journal ArticleDOI
TL;DR: It is shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant, and this protein, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding.
Abstract: In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid–plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.

337 citations

Journal ArticleDOI
TL;DR: The honeydew composition and production of four aphid species feeding on Tanacetum vulgare, and mutualistic relationships with the ant Lasius niger were studied, showing consistent with the ants' preference for M. fuscoviride, which produced the largest amount of Honeydew including a considerable proportion of the trisaccharides melezitose and raffinose.
Abstract: The honeydew composition and production of four aphid species feeding on Tanacetum vulgare, and mutualistic relationships with the ant Lasius niger were studied. In honeydew of Metopeurum fuscoviride and Brachycaudus cardui, xylose, glucose, fructose, sucrose, maltose, melezitose, and raffinose were detected. The proportion of trisaccharides (melezitose, raffinose) ranged between 20% and 35%. No trisaccharides were found in honeydew of Aphis fabae, and honeydew of Macrosiphoniella tanacetaria consisted of only xylose, glucose and sucrose. M. fuscoviride produced by far the largest amounts of honeydew per time unit (880 μg/aphid per hour), followed by B. cardui (223 μg/aphid per hour), A. fabae (133 μg/aphid per hour) and M. tanacetaria (46 μg/aphid per hour). The qualitative and quantitative honeydew production of the aphid species corresponded well with the observed attendance by L. niger. L. niger workers preferred trisaccharides over disaccharides and monosaccharides when these sugars were offered in choice tests. The results are consistent with the ants' preference for M. fuscoviride, which produced the largest amount of honeydew including a considerable proportion of the trisaccharides melezitose and raffinose. The preference of L. niger for B. cardui over A. fabae, both producing similar amounts of honeydew, may be explained by the presence of trisaccharides and the higher total sugar concentration in B. cardui honeydew. M. tanacetaria, which produced only low quantities of honeydew with no trisaccharides was not attended at all by L. niger.

316 citations


Network Information
Related Topics (5)
Aphid
11.3K papers, 229.7K citations
93% related
Parasitoid
5K papers, 120.9K citations
93% related
Lepidoptera genitalia
10.1K papers, 78.8K citations
92% related
Weevil
6.4K papers, 71.8K citations
90% related
Instar
5.5K papers, 78.1K citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023142
2022270
2021131
2020155
2019149
2018157