scispace - formally typeset
Search or ask a question

Showing papers on "Apoptosis published in 1992"


Journal Article
TL;DR: The data suggest that macrophages specifically recognize phosphatidylserine that is exposed on the surface of lymphocytes during the development of apoptosis, and suggest that apoptotic lymphocytes lose membrane phospholipid asymmetry and expose phosphorus on the outer leaflet of the plasma membrane.
Abstract: During normal tissue remodeling, macrophages remove unwanted cells, including those that have undergone programmed cell death, or apoptosis. This widespread process extends to the deletion of thymocytes (negative selection), in which cells expressing inappropriate Ag receptors undergo apoptosis, and are phagocytosed by thymic macrophages. Although phagocytosis of effete leukocytes by macrophages has been known since the time of Metchnikoff, only recently has it been recognized that apoptosis leads to surface changes that allow recognition and removal of these cells before they are lysed. Our data suggest that macrophages specifically recognize phosphatidylserine that is exposed on the surface of lymphocytes during the development of apoptosis. Macrophage phagocytosis of apoptotic lymphocytes was inhibited, in a dose-dependent manner, by liposomes containing phosphatidyl-L-serine, but not by liposomes containing other anionic phospholipids, including phosphatidyl-D-serine. Phagocytosis of apoptotic lymphocytes was also inhibited by the L isoforms of compounds structurally related to phosphatidylserine, including glycerophosphorylserine and phosphoserine. The membranes of apoptotic lymphocytes bound increased amounts of merocyanine 540 dye relative to those of normal cells, indicating that their membrane lipids were more loosely packed, consistent with a loss of membrane phospholipid asymmetry. Apoptotic lymphocytes were shown to express phosphatidylserine (PS) externally, because PS on their surfaces was accessible to derivatization by fluorescamine, and because apoptotic cells expressed procoagulant activity. These observations suggest that apoptotic lymphocytes lose membrane phospholipid asymmetry and expose phosphatidylserine on the outer leaflet of the plasma membrane. Macrophages then phagocytose apoptotic lymphocytes after specific recognition of the exposed PS.

3,344 citations


Journal ArticleDOI
03 Apr 1992-Cell
TL;DR: It is demonstrated that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.

3,047 citations


Journal ArticleDOI
26 Mar 1992-Nature
TL;DR: The Ipr mice develop lymphadenopathy and suffer from a systemic lupus erythematosus-like autoimmune disease, indicating an important role for Fas antigen in the negative selection of autoreactive T cells in the thymus.
Abstract: Fas antigen is a cell-surface protein that mediates apoptosis. It is expressed in various tissues including the thymus and has structural homology with a number of cell-surface receptors, including tumour necrosis factor receptor and nerve growth factor receptor. Mice carrying the lymphoproliferation (lpr) mutation have defects in the Fas antigen gene. The lpr mice develop lymphadenopathy and suffer from a systemic lupus erythematosus-like autoimmune disease, indicating an important role for Fas antigen in the negative selection of autoreactive T cells in the thymus.

2,988 citations


Journal ArticleDOI
TL;DR: The results suggest that activation of the PD‐1 gene may be involved in the classical type of programmed cell death.
Abstract: The classical type of programmed cell death is characterized by its dependence on de novo RNA and protein synthesis and morphological features of apoptosis. We confirmed that stimulated 2B4.11 (a murine T-cell hybridoma) and interleukin-3 (IL-3)-deprived LyD9 (a murine haematopoietic progenitor cell line) died by the classical type of programmed cell death. Assuming that common biochemical pathways might be involved in the deaths of 2B4.11 and LyD9, we isolated the PD-1 gene, a novel member of the immunoglobulin gene superfamily, by using subtractive hybridization technique. The predicted PD-1 protein has a variant form of the consensus sequence found in cytoplasmic tails of signal transducing polypeptides associated with immune recognition receptors. The PD-1 gene was activated in both stimulated 2B4.11 and IL-3-deprived LyD9 cells, but not in other death-induced cell lines that did not show the characteristic features of the classical programmed cell death. Expression of the PD-1 mRNA in mouse was restricted to the thymus and increased when thymocyte death was augmented by in vivo injection of anti-CD3 antibody. These results suggest that activation of the PD-1 gene may be involved in the classical type of programmed cell death.

2,616 citations


Journal ArticleDOI
TL;DR: The present review describes several methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis, applied to studies of apoptosis triggered in the human leukemic HL-60 cell line by DNA topoisomerase I or II inhibitors, and in rat thymocytes by either topoisomersase inhibitors or prednisolone.
Abstract: The present review describes several methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. Most of these methods were applied to studies of apoptosis triggered in the human leukemic HL-60 cell line by DNA topoisomerase I or II inhibitors, and in rat thymocytes by either topoisomerase inhibitors or prednisolone. In most cases, apoptosis was selective to cells in a particular phase of the cell cycle: only S-phase HL-60 cells and G0 thymocytes were mainly affected. Necrosis was induced by excessively high concentrations of these drugs. The following cell features were found useful to characterize the mode of cell death: a) Activation of an endonuclease in apoptocic cells resulted in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, led to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content made it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of the apoptotic process. b) Plasma membrane integrity, which is lost in necrotic but not apoptotic cells, was probed by the exclusion of propidium iodide (PI). The combination of PI followed by Hoechst 33342 proved to be an excellent probe to distinguish live, necrotic, early- and late-apoptotic cells. c) Mitochondrial transmembrane potential, assayed by retention of rhodamine 123 was preserved in apoptotic but not necrotic cells. d) The ATP-dependent lysosomal proton pump, tested by the supravital uptake of acridine orange (AO) was also preserved in apoptotic but not necrotic cells. e) Bivariate analysis of cells stained for DNA and protein revealed markedly diminished protein content in apoptotic cells, most likely due to activation of endogenous proteases. Necrotic cells, having leaky membranes, had minimal protein content. f) Staining of RNA allowed for the discrimination of G0 from G1 cells and thus made it possible to reveal that apoptosis was selective to G0 thymocytes. g) The decrease in forward light scatter, paralleled either by no change (HL-60 cells) or an increase (thymocytes) of right angle scatter, were early changes during apoptosis. h) The sensitivity of DNA in situ to denaturation, was increased in apoptotic and necrotic cells. This feature, probed by staining with AO at low pH, provided a sensitive and early assay to discriminate between live, apoptotic and necrotic cells, and to evaluate the cell cycle phase specificity of these processes. i) The in situ nick translation assay employing labeled triphosphonucleotides can be used to reveal DNA strand breaks, to detect the very early stages of apoptosis.(ABSTRACT TRUNCATED AT 400 WORDS)

1,953 citations


Journal ArticleDOI
15 Oct 1992-Blood
TL;DR: Prolongation of survival may be important for the regulation of host resistance and inflammation, and may represent a crucial permissive step for certain cytokines and microbial products that activate gene expression and function in PMN.

1,150 citations


Journal ArticleDOI
TL;DR: In the immune system there are many examples of programmed cell death, during development of lymphocytes as well as at later stages, after interaction with antigen, which display the morphology of apoptosis.
Abstract: Death of some cells in the mammalian body is clearly programmed. In the immune system there are many examples of programmed cell death, during development of lymphocytes as well as at later stages, after interaction with antigen. Many of these examples display the morphology of apoptosis: They undergo shrinkage and zeiosis, the nucleus collapses, and chromatin is cleaved into nucleosomal fragments. The cell is rapidly recognized by phagocytes and disposed of without releasing its contents. In some but not all cases of apoptosis, new macromolecular synthesis is required. Cytotoxic T cells induce changes in their targets that are morphologically apoptotic. The mechanism of apoptosis is currently under active investigation.

1,148 citations


Journal ArticleDOI
08 Oct 1992-Nature
TL;DR: It is demonstrated that Bcl-2 prevents apoptotic death induced by c-Myc, a mechanism whereby cells can express c- myc without undergoing apoptosis is provided, and a possible explanation for the ability of B cl-2 to synergize with c-myc in cell transformation is given.
Abstract: APOPTOSIS is a form of physiological cell death, characterized by chromatin condensation, cytoplasmic blebbing and DNA fragmentation1, which often depends on RNA and protein synthesis by the dying cell2–4. The c-myc proto-oncogene, usually implicated in cell transformation, differentiation and cell-cycle progression5–9 also has a central role in some forms of apoptosis10–13. These opposing roles of myc in cell growth and death require that other gene products dictate the outcome of c-Myc expression on a cell. A candidate for such a modifying gene is bcl-2, whose product prolongs cell survival14–16 and blocks apoptosis in some systems17–21. Here we demonstrate that Bcl-2 prevents apoptotic death induced by c-Myc, provide a mechanism whereby cells can express c-Myc without undergoing apoptosis, and give a possible explanation for the ability of Bcl-2 to synergize with c-Myc in cell transformation21–23.

979 citations


Journal ArticleDOI
10 Jul 1992-Science
TL;DR: On culturing, both CD4+ and CD8+ T cells from asymptomatic HIV-infected individuals died as a result of programmed cell death (apoptosis), and Apoptosis was enhanced by activation with CD3 antibodies.
Abstract: In human immunodeficiency virus (HIV) infection, functional defects and deletion of antigen-reactive T cells are more frequent than can be explained by direct viral infection. On culturing, both CD4+ and CD8+ T cells from asymptomatic HIV-infected individuals died as a result of programmed cell death (apoptosis). Apoptosis was enhanced by activation with CD3 antibodies. Programmed cell death, associated with impaired T cell reactivity, may thus be responsible for the deletion of reactive T cells that contributes to HIV-induced immunodeficiency.

923 citations


Journal ArticleDOI
09 Apr 1992-Nature
TL;DR: The gene ced-9 of the nematode Caenorhabditis elegansacts to protect cells from programmed cell death; a mutation that abnormally activates-9 prevents the cell deaths that occur during normal C. elegans development.
Abstract: The gene ced-9 of the nematode Caenorhabditis elegansacts to protect cells from programmed cell death. A mutation that abnormally activatesced-9 prevents the cell deaths that occur during normal C. elegans development. Conversely, mutations that inactivate ced-9 cause cells that normally live to undergo programmed cell death; these mutations result in embryonic lethality, indicating that ced-9 function is essential for development. The ced-9 gene functions by negatively regulating the activities of other genes that are required for the process of programmed cell death.

922 citations


Journal ArticleDOI
TL;DR: Examination at both the light and electron microscopic level revealed that cells expressing wild-type p53 developed morphological features of apoptosis, suggesting that wild- type p53 could play a critical role in the terminal differentiation program of colonic epithelial cells.
Abstract: A wild-type p53 gene under control of the metallothionein MT-1 promoter was stably transfected into human colon tumor-derived cell line EB. Repeated inductions of the metallothionein wild-type p53 gene with zinc chloride results in progressive detachment of wild-type p53 cells grown on culture dishes. Examination at both the light and electron microscopic level revealed that cells expressing wild-type p53 developed morphological features of apoptosis. DNA from both attached and detached cells was degraded into a ladder of nucleosomal-sized fragments. Expression of wild-type p53 inhibited colony formation in soft agar and tumor formation in nude mice. Furthermore, established tumors in nude mice underwent regression if wild-type p53 expression was subsequently induced. Regressing tumors showed histological features of apoptosis. Thus, regression of these tumors was the result of apoptosis occurring in vivo. Apoptosis may be a normal part of the terminal differentiation program of colonic epithelial cells. Our results suggest that wild-type p53 could play a critical role in this process.

Journal ArticleDOI
TL;DR: It is suggested that identification of the gene products which couple the stimulus to the response, and so determine intrinsic cellular sensitivity (and resistance), will be important targets for new types of drugs which might allow responses to occur in the major cancers of man, which are chemoresistant.
Abstract: Most of the cytotoxic anticancer drugs in current use have been shown to induce apoptosis in susceptible cells. The fact that disparate agents, which interact with different targets, induce cell death with some common features (endonucleolytic cleavage of DNA, changes in chromatin condensation) suggests that cytotoxicity is determined by the ability of the cell to engage this so-called 'programmed' cell death. The mechanism of the coupling of a stimulus (drug-target interaction) to a response (cell death) is not known, but modulation of this coupling may affect the outcome of drug treatment. This review surveys the recent evidence which supports the idea that the drug-target interaction per se is not the sole determinant of cellular sensitivity of cytotoxic drugs. Studies of the signals which might engage apoptosis, the genes which modulate it and the biochemical process of drug-induced apoptosis itself are described, where possible, for glucocorticoids, topoisomerase inhibitors, alkylating agents, antimetabolites and antihormones. It is suggested that identification of the gene products which couple the stimulus to the response, and so determine intrinsic cellular sensitivity (and resistance), will be important targets for new types of drugs. These might then allow responses to occur in the major cancers of man, which are chemoresistant.

Journal Article
TL;DR: Interspecific backcross analysis indicated that the gene coding for the Fas antigen is in the distal region of mouse chromosome 19, and was significantly induced by treatment with IFN-gamma but not byIFN-alpha/beta.
Abstract: The cell surface Fas antigen is a membrane-associated polypeptide which can mediate apoptosis. cDNA clones encoding the Fas antigen were isolated from a cDNA library constructed with mRNA from the mouse macrophage cell line BAM3. The nucleotide sequence and the deduced amino acid sequence of the mouse Fas antigen were 58.5 and 49.3% identical, respectively, to the corresponding sequences of human Fas antigen cDNA. The mouse Fas antigen consists of 306 amino acids with a calculated Mr of 34,971 and contains a single transmembrane domain which divides the molecule into extracellular and cytoplasmic domains. A 2.1-kb mRNA coding for the Fas antigen was detected in the mouse thymus, heart, liver, and ovary but not in brain and spleen. The expression of the Fas antigen gene in mouse fibroblast L929 and macrophage BAM3 cell lines was significantly induced by treatment with IFN-gamma but not by IFN-alpha/beta. Interspecific backcross analysis indicated that the gene coding for the Fas antigen is in the distal region of mouse chromosome 19.

Journal ArticleDOI
09 Oct 1992-Science
TL;DR: Overexpression of the bcl-2 proto-oncogene in cultured sympathetic neurons has now been shown to prevent apoptosis normally induced by deprivation of nerve growth factor, suggesting that the B cl-2 protein may be a major mediator of the effects of neurotrophic factors on neuronal survival.
Abstract: Approximately half of the neurons produced during embryogenesis normally die before adulthood. Although target-derived neurotrophic factors are known to be major determinants of programmed cell death--apoptosis--the molecular mechanisms by which trophic factors interfere with cell death regulation are largely unknown. Overexpression of the bcl-2 proto-oncogene in cultured sympathetic neurons has now been shown to prevent apoptosis normally induced by deprivation of nerve growth factor. This finding, together with the previous demonstration of bcl-2 expression in the nervous system, suggests that the Bcl-2 protein may be a major mediator of the effects of neurotrophic factors on neuronal survival.

Journal ArticleDOI
TL;DR: It is reported that key morphological changes of apoptosis can be dissociated experimentally from the DNA fragmentation produced by endonuclease activity.
Abstract: Apoptosis, a major form of cell death, is characterized by chromatin condensation, a reduction in cell volume and endonuclease cleavage of DNA into oligonucleosomal length fragments. The detection of these fragments by gel electrophoresis, as a DNA ladder, is currently used as the major biochemical index of apoptosis. Here we report that key morphological changes of apoptosis can be dissociated experimentally from the DNA fragmentation produced by endonuclease activity. Internucleosomal cleavage of DNA is thus likely to be a later event in the apoptotic process.

Journal ArticleDOI
TL;DR: E1A-dependent stimulation of cell proliferation is accompanied by apoptosis and thereby insufficient to singly induce transformation, and high-frequency transformation requires a second function encoded by the E1B 19-kDa protein to block apoptosis.
Abstract: Cooperation between the adenovirus E1A and E1B oncogenes is required for transformation of primary quiescent rodent cells. Although expression of E1A alone will stimulate cell proliferation sufficient to initiate transformed focus formation, proliferation fails to be sustained and foci degenerate. Coexpression of either the 19-kDa or 55-kDa E1B oncoproteins with E1A permits high-frequency transformation by overcoming this cytotoxic response. Without E1B 19-kDa protein expression, however, transformants remain susceptible to induction of cell death. Rapid loss of viability is coincident with nucleolytic cleavage of DNA in intranucleosomal regions and chromatin condensation, hallmarks of programmed cell death (apoptosis). Furthermore, overexpression of a known suppressor of apoptosis, the Bcl-2 protooncogene, can rescue E1A-induced focus degeneration. Thus E1A-dependent stimulation of cell proliferation is accompanied by apoptosis and thereby insufficient to singly induce transformation. High-frequency transformation requires a second function encoded by the E1B 19-kDa protein to block apoptosis.

Journal ArticleDOI
TL;DR: TGF-beta 1 is involved in the initiation of apoptosis in the liver and that the mature form of TGF- beta 1 is the active principle, according to previous studies.
Abstract: In previous studies hepatocytes undergoing cell death by apoptosis but not normal hepatocytes in rat liver showed immunostaining for transforming growth factor beta 1 (TGF-beta 1). Staining was much stronger with antibodies recognizing the pro-region of TGF-beta 1 than the mature peptide itself. Therefore we investigated the ability of both forms of TGF-beta 1 to induce apoptosis in primary cultures of rat hepatocytes. Mature TGF-beta 1 induced rounding up of the cells and fragmentation into multiple vesicles. As revealed by the DNA-specific stain H33258, the chromatin of these cells condensed and segregated into masses at the nuclear membrane; this was obviously followed by fragmentation of the nucleus. Ultrastructurally the cytoplasm was well preserved, as demonstrated by the presence of intact cell organelles. These features strongly suggest the occurrence of apoptosis. Quantification of nuclei with condensed chromatin revealed that mature TGF-beta 1 was 30-fold more effective than the TGF-beta 1 latency-associated protein complex. Finally, we administered TGF-beta 1 in vivo using an experimental model in which regression of rat liver was initiated by a short preceding treatment with the hepatomitogen cyproterone acetate. Two doses of TGF-beta 1, each 1 nM/kg, augmented the incidence of apoptotic hepatocytes 5-fold. Equimolar doses of TGF-beta 1 latency-associated protein complex were ineffective. These studies suggest that TGF-beta 1 is involved in the initiation of apoptosis in the liver and that the mature form of TGF-beta 1 is the active principle.

Journal ArticleDOI
TL;DR: The data indicate that even picomolar concentrations of gp120 prime T cells for activation-induced cell death are found, suggesting a mechanism for CD4+ T cell depletion in acquired immune deficiency syndrome (AIDS), particularly in the face of concurrent infection and antigenic challenge with other organisms.
Abstract: During human immunodeficiency virus (HIV) infection there is a profound and selective decrease in the CD4+ population of T lymphocytes. The mechanism of this depletion is not understood, as only a small fraction of all CD4+ cells appear to be productively infected with HIV-1 in seropositive individuals. In the present study, crosslinking of bound gp120 on human CD4+ T cells followed by signaling through the T cell receptor for antigen was found to result in activation-dependent cell death by a form of cell suicide termed apoptosis, or programmed cell death. The data indicate that even picomolar concentrations of gp120 prime T cells for activation-induced cell death, suggesting a mechanism for CD4+ T cell depletion in acquired immune deficiency syndrome (AIDS), particularly in the face of concurrent infection and antigenic challenge with other organisms. These results also provide an explanation for the enhancement of infection by certain antibodies against HIV, and for the paradox that HIV appears to cause AIDS after the onset of antiviral immunity.

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: Expression of the human bcl-2 gene in the nematode Caenorhabditis elegans reduced the number of programmed cell deaths, suggesting that the mechanism of programmedcell death controlled by bCl-2 in humans is the same as that in nematodes.
Abstract: Programmed cell death is a physiological process that eliminates unwanted cells. The bcl-2 gene regulates programmed cell death in mammalian cells, but the way it functions is not known. Expression of the human bcl-2 gene in the nematode Caenorhabditis elegans reduced the number of programmed cell deaths, suggesting that the mechanism of programmed cell death controlled by bcl-2 in humans is the same as that in nematodes.

Journal Article
TL;DR: The results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophage studied.
Abstract: One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.


Journal ArticleDOI
TL;DR: A novel and rapid multiparameter flow cytometric assay which discriminates and quantifies viable, apoptotic and necrotic cells via measurement of forward and side light scatter (proportional to cell diameter and internal granularity, respectively) and the DNA-binding fluorophores Hoechst 33342 and propidium is described.

Journal ArticleDOI
TL;DR: Experiments using RNA and protein synthesis inhibitors suggest the presence of either intracellular repressors or inducers of apoptosis, which plays an important role in early development and growth of normal adult tissues.
Abstract: Apoptosis is a type of cell death that plays an important role in early development and growth of normal adult tissues. It is regulated by physiological stimuli and is present in many species and tissues. The main morphological characteristics are nuclear fragmentation and cellular breakdown in apoptotic vesicles. Internucleosomal DNA fragmentation is an important biochemical feature that is the result of a yet to be isolated endonuclease activity. Experiments using RNA and protein synthesis inhibitors suggest the presence of either intracellular repressors or inducers of apoptosis.

Journal ArticleDOI
R. Strange1, Feng Li1, Susanne Saurer1, A. Burkhardt1, Robert R. Friis1 
TL;DR: Wyllie et al. as discussed by the authors showed that post-lactational mammary gland involution results in a dramatic drop in ODC, a gene involved in synthesis of a component of milk, and nearly simultaneous induction of SGP-2, associated with apoptotic cell death.
Abstract: During post-lactational mammary gland involution, the bulk of mammary epithelium dies and is reabsorbed. This massive cell death and tissue restructuring was found to be accompanied by a specific pattern of gene expression. Northern blot analysis showed that weaning resulted in a dramatic drop in ODC, a gene involved in synthesis of a component of milk, and the nearly simultaneous induction of SGP-2, a gene associated with apoptotic cell death. These changes were followed by decreases in expression of milk protein genes to basal levels and expression of genes associated with regulation of cell proliferation and differentiation, p53, c-myc and TGF-beta 1. Subsequently, additional genes implicated in stress response, tissue remodelling, and apoptotic cell death were transiently expressed, expression peaking at about 6 days post-weaning. A non-random degradation of DNA yielding the oligonucleosomal length fragmentation pattern typical of apoptotic cell death (Wyllie, 1980; Wyllie et al., 1980) was detected in association with morphological changes and gene expression. The correlations between: (a) changes in morphology, (b) pattern of gene expression and (c) changes in DNA integrity suggest that complementary programs for cell death and tissue remodelling direct post-lactational mammary gland involution.

Journal Article
TL;DR: Findings provide evidence that p26-Bcl-2 interferes with a pathway for cell death that is activated by multiple drugs used for the treatment of cancer.
Abstract: The S49.1 and WEHI7.2 murine lymphoid cell lines have been used extensively as models for investigations of programmed cell death ("apoptosis") induced by glucocorticoids such as dexamethasone. Infection of these thymus-derived T-cell lines with a recombinant retrovirus encoding the human M(r) 26,000 Bcl-2 oncoprotein resulted in marked resistance to DEX-mediated cell death and DNA degradation into oligonucleosomal fragments, without interfering with the ability of dexamethasone to suppress cellular proliferation and without lowering levels of glucocorticoid receptors. In contrast, high levels of p26-Bcl-2 production did not block cell killing and DNA fragmentation induced by H2O2, suggesting that the Bcl-2 impairs some but not all pathways for cell death in S49.1 and WEHI7.2 cells that are associated with the DNA fragmentation pattern typical of apoptosis. S49.1 and WEHI7.2 cells infected with bcl-2 but not control retrovirus also exhibited increased resistance to cell killing and DNA fragmentation induced by a wide variety of reagents, including the calcium ionophore ionomycin, the phorbol ester tetradecanoylphorbol acetate, the dihydrofolate reductase inhibitor methotrexate, the antimetabolite 1-beta-D-arabinofuranosylcytosine, and the microtubule inhibitor vincristine. These findings provide evidence that p26-Bcl-2 interferes with a pathway for cell death that is activated by multiple drugs used for the treatment of cancer.

Journal ArticleDOI
TL;DR: A biochemical hallmark of apoptosis is a characteristic form of DNA degradation in which the genome is cleaved at internucleosomal sites, generating a ‘ladder’ of DNA fragments when analyzed by agarose gel electrophoresis.
Abstract: Apoptosis, or programmed cell death, is an endogenous cellular process whereby an external signal activates a metabolic pathway that results in cell death. This form of cell death appears to be a common feature in many biological processes where cell deletion is a mechanism for altering tissue structure and function. Historically, apoptosis has been studied using histological techniques; however, more recent interest has focused on analyzing this process at the biochemical level. A biochemical hallmark of apoptosis is a characteristic form of DNA degradation in which the genome is cleaved at internucleosomal sites, generating a 'ladder' of DNA fragments when analyzed by agarose gel electrophoresis. A number of assay systems have been developed to study this nuclease activity. For example, nuclease activity has been analyzed by measuring the release of endogenous DNA from apoptotic cells, by flow cytometric analysis of apoptotic cells and by analyzing in situ apoptotic nuclease activity in polyacrylamide gels containing DNA. Use of these assay systems has enabled investigators to study the signal transduction pathways that mediate apoptosis and to characterize the endonuclease itself. Future biochemical studies in this field will focus on isolating the genes and gene products that mediate apoptosis.

Journal Article
TL;DR: In contrast to Fas-expressing cultured cell lines, viability of in vitro stimulated T and B cells as well as freshly isolated CD45RO+ T cells was not significantly changed after the treatment with anti-Fas mAb, indicating that additional cellular conditions to Fas expression might be required for anti-fas-induced cell death.
Abstract: The Fas Ag is a newly defined cell-surface molecule that may mediate apoptosis. The antibody against Fas Ag can induce the apoptotic cell death in cell lines expressing this Ag. PBL subpopulations at various ages were here examined for Fas expression by two-or three-color flow-cytometric analyses using anti-Fas mAb. It was found that Fas Ag was appreciably detected on a proportion of T and B cells, whereas its expression was absent for NK cells. For CD4+ and CD8+ T cells, Fas Ag was expressed preferentially on CD45RO+ (memory or previously activated) populations, but not on CD45RO- naive ones. TCR-gamma/delta+ T cells, especially their CD45RO+ subsets, also expressed Fas Ag. Expectably, neonatal T cell subpopulations, most of which had the naive (CD45RO-) phenotype, expressed little Fas Ag. Fas-expressing B cells dominated in surface(s) IgD- populations, but neonatal B cells as well as adult sIgD+ B cells had little Fas Ag. The Fas Ag was inducible after in vitro mitogenic stimulation of naive T and B cells from neonatal blood. These observations suggested that expression of Fas Ag on T and B cells in the peripheral blood might reflect their in vivo Ag-activated status. In contrast to Fas-expressing cultured cell lines, however, viability of in vitro stimulated T and B cells as well as freshly isolated CD45RO+ T cells was not significantly changed after the treatment with anti-Fas mAb, indicating that additional cellular conditions to Fas expression might be required for anti-Fas-induced cell death.

Journal Article
TL;DR: Application of these analytical techniques to renal vascular injury has distinguished that brief periods of complete ischemia initiates a form of cell death (apoptosis) during a subsequent reperfusion phase that is drastically different from cellular necrosis induced by prolonged severe ischemía.
Abstract: A multiparametric analysis to demonstrate that even brief periods of arterial clamping can initiate extensive cell loss in a rat kidney through the process of apoptosis during the 48-hour period after reperfusion was performed. Microscopic examination of rat renal tissues subject to a 5-, 30-, or 45-minute period of complete ischemia showed the presence of apoptotic bodies both within and occasionally between renal tubules, appearing as early 12 hours after reperfusion, and increasing in numbers at 24 hours. Furthermore, DNA extracted from such reperfused renal tissue demonstrated the appearance of a distinct 'ladder' pattern of DNA fragments after electrophoresis in agarose gels, a phenomenon commonly associated with cells undergoing apoptosis and in contrast to the predominant smear pattern obtained after electrophoresis of DNA extracted from necrotic renal tissue. Finally, messenger RNA (mRNA) encoding sulfated glycoprotein-2, a gene product previously identified to apoptotic renal cells, was found to be highly expressed in the 30-minute arterial clamped rat kidney after 24 hours of reperfusion, but was not detectable in mRNA extracted from renal tissue after 24 hours chronic infarction. This study demonstrates that a combination of morphologic, biochemical, and molecular markers can be used to distinguish predominant modes of cell death in varying forms of tissue injury. Application of these analytical techniques to renal vascular injury has distinguished that brief periods of complete ischemia initiates a form of cell death (apoptosis) during a subsequent reperfusion phase that is drastically different from cellular necrosis induced by prolonged severe ischemia.

Journal ArticleDOI
TL;DR: The description of apoptosis as cellular 'suicide', the functional opposite of mitosis, is now attracting more attention and is providing new insights into the pathophysiology of a variety of diseases, and suggesting new therapeutic strategies.

Journal ArticleDOI
TL;DR: The results indicate that in the absence of the gamma 1(34.5) gene the SK-N-SH neuroblastoma cells triggered a response similar to the programed cell death of neuronal cells induced by metabolic stress, possibly in order to enable the protein synthesis necessary for viral replication.
Abstract: The gamma 1(34.5) gene of herpes simplex virus 1 was previously shown to play a role in viral virulence since deletion of the gene reduced by a factor of approximately 100,000 the capacity of the virus to replicate in the central nervous system and cause mortality in the mouse. Here we show that in the human neuroblastoma cell line SK-N-SH of neuronal origin gamma 1(34.5) null mutants expressed early proteins, viral DNA, and mRNA of late genes. However, the onset of viral DNA synthesis triggered complete cessation of incorporation of radioactive precursors into proteins. The mutant and wild-type viruses replicated and could not be differentiated in cell lines or cell strains of nonneuronal origin. The results indicate that in the absence of the gamma 1(34.5) gene the SK-N-SH neuroblastoma cells triggered a response similar to the programed cell death of neuronal cells induced by metabolic stress. The gamma 1(34.5) protein precludes this cell response possibly in order to enable the protein synthesis necessary for viral replication.