scispace - formally typeset
Search or ask a question

Showing papers on "Apoptosis published in 2002"


Journal ArticleDOI
11 Jul 2002-Nature
TL;DR: It is reported that Hmgb1-/- necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours, and cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.
Abstract: High mobility group 1 (HMGB1) protein is both a nuclear factor and a secreted protein. In the cell nucleus it acts as an architectural chromatin-binding factor that bends DNA and promotes protein assembly on specific DNA targets. Outside the cell, it binds with high affinity to RAGE (the receptor for advanced glycation end products) and is a potent mediator of inflammation. HMGB1 is secreted by activated monocytes and macrophages, and is passively released by necrotic or damaged cells. Here we report that Hmgb1(-/-) necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours. Apoptotic cells do not release HMGB1 even after undergoing secondary necrosis and partial autolysis, and thus fail to promote inflammation even if not cleared promptly by phagocytic cells. In apoptotic cells, HMGB1 is bound firmly to chromatin because of generalized underacetylation of histone and is released in the extracellular medium (promoting inflammation) if chromatin deacetylation is prevented. Thus, cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.

3,847 citations


Journal ArticleDOI
TL;DR: What are the molecular mechanisms of tumour resistance to apoptosis and how can the authors use this knowledge to resensitize tumour cells to cancer therapy?
Abstract: Every cell in a multicellular organism has the potential to die by apoptosis, but tumour cells often have faulty apoptotic pathways. These defects not only increase tumour mass, but also render the tumour resistant to therapy. So, what are the molecular mechanisms of tumour resistance to apoptosis and how can we use this knowledge to resensitize tumour cells to cancer therapy?

1,948 citations


Journal ArticleDOI
12 Jul 2002-Science
TL;DR: It is shown that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARp-1–dependent cell death.
Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1–dependent cell death. N -methyl- N ′-nitro- N -nitrosoguanidine, H2O2, and N -methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1–dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.

1,781 citations


Journal ArticleDOI
Yigong Shi1
TL;DR: Current understanding of caspase regulation during apoptosis is presented and structural and biochemical studies on procaspases, IAPs, Smac/DIABLO, and apoptosome are reviewed.

1,716 citations


Journal ArticleDOI
TL;DR: In vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation, and apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-beta1 secretion, resulting in accelerated resolution of inflammation.
Abstract: Ingestion of apoptotic cells in vitro by macrophages induces TGF-beta1 secretion, resulting in an anti-inflammatory effect and suppression of proinflammatory mediators. Here, we show in vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation. This enhancement appeared to require phosphatidylserine (PS) on the apoptotic cells and local induction of TGF-beta1. Working with thioglycollate-stimulated peritonea or LPS-stimulated lungs, we examined the effect of apoptotic cell uptake on TGF-beta1 induction. Viable or opsonized apoptotic human Jurkat T cells, or apoptotic PLB-985 cells, human monomyelocytes that do not express PS during apoptosis, failed to induce TGF-beta1. PS liposomes, or PS directly transferred onto the PLB-985 surface membranes, restored the TGF-beta1 induction. Apoptotic cell instillation into LPS-stimulated lungs reduced proinflammatory chemokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, total inflammatory cell counts in the BALF were markedly reduced 1-5 days after apoptotic cell instillation, an effect that could be reversed by opsonization or coinstillation of TGF-beta1 neutralizing antibody. This reduction resulted from early decrease in neutrophils and later decreases in lymphocytes and macrophages. In conclusion, apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-beta1 secretion, resulting in accelerated resolution of inflammation.

1,189 citations


Journal ArticleDOI
TL;DR: In vitro exposure of islets from nondiabetic organ donors to high glucose levels resulted in increased production and release of IL-1beta, followed by NF-kappaB activation, Fas upregulation, DNA fragmentation, and impaired beta cell function, which implicate an inflammatory process in the pathogenesis of glucotoxicity in type 2 diabetes.
Abstract: In type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic beta cells, causing impaired insulin secretion. IL-1beta is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1beta inhibits beta cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor NF-kappaB. Recently, we have shown that increased glucose concentrations also induce Fas expression and beta cell apoptosis in human islets. The aim of the present study was to test the hypothesis that IL-1beta may mediate the deleterious effects of high glucose on human beta cells. In vitro exposure of islets from nondiabetic organ donors to high glucose levels resulted in increased production and release of IL-1beta, followed by NF-kappaB activation, Fas upregulation, DNA fragmentation, and impaired beta cell function. The IL-1 receptor antagonist protected cultured human islets from these deleterious effects. beta cells themselves were identified as the islet cellular source of glucose-induced IL-1beta. In vivo, IL-1beta-producing beta cells were observed in pancreatic sections of type 2 diabetic patients but not in nondiabetic control subjects. Similarly, IL-1beta was induced in beta cells of the gerbil Psammomys obesus during development of diabetes. Treatment of the animals with phlorizin normalized plasma glucose and prevented beta cell expression of IL-1beta. These findings implicate an inflammatory process in the pathogenesis of glucotoxicity in type 2 diabetes and identify the IL-1beta/NF-kappaB pathway as a target to preserve beta cell mass and function in this condition.

1,105 citations


Journal ArticleDOI
05 Apr 2002-Cell
TL;DR: Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelium.

1,023 citations


Journal ArticleDOI
TL;DR: In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and BCl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state.

958 citations


Journal ArticleDOI
31 May 2002-Science
TL;DR: The basic mechanisms of the extrinsic pathway are introduced, using the example of the prototypical death receptor Fas and its role in apoptosis, but it also points out the increasingly understood importance of this receptor as a non-apoptotic signal transducer.
Abstract: Apoptosis and related forms of cell death have central importance in development, homeostasis, tumor surveillance, and the function of the immune system. Apoptosis is initiated by two principal pathways. The intrinsic pathway emerges from mitochondria, whereas the extrinsic pathway is activated by the ligation of death receptors. This Viewpoint introduces the basic mechanisms of the extrinsic pathway, using the example of the prototypical death receptor Fas and its role in apoptosis, but it also points out the increasingly understood importance of this receptor as a non-apoptotic signal transducer.

917 citations


Journal ArticleDOI
TL;DR: It is shown that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells, suggesting that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophile metabolism affects immunity under physiopathologic conditions.
Abstract: Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that, expressed by different cell types, has regulatory effects on T cells resulting from tryptophan depletion in specific local tissue microenvironments. Different mechanisms, however, might contribute to IDO-dependent immune regulation. We show here that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells. T cell apoptosis was observed at relatively low concentrations of kynurenines, did not require Fas/Fas ligand interactions, and was associated with the activation of caspase-8 and the release of cytochrome c from mitochondria. When administered in vivo, the two kynurenines caused depletion of specific thymocyte subsets in a fashion qualitatively similar to dexamethasone. These data suggest that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophan metabolism affects immunity under physiopathologic conditions.

891 citations


Journal ArticleDOI
TL;DR: It is concluded that Yor197w indeed functions as a bona fide caspase in yeast and the name Yeast Caspase-1 is proposed, pointing to a physiological role in elimination of overaged cells.

Journal ArticleDOI
04 Apr 2002-Nature
TL;DR: It is shown here that the combined loss of p63 and p73 results in the failure of cells containing functional p53 to undergo apoptosis in response to DNA damage.
Abstract: The tumour-suppressor gene p53 is frequently mutated in human cancers and is important in the cellular response to DNA damage. Although the p53 family members p63 and p73 are structurally related to p53, they have not been directly linked to tumour suppression, although they have been implicated in apoptosis. Given the similarity between this family of genes and the ability of p63 and p73 to transactivate p53 target genes, we explore here their role in DNA damage-induced apoptosis. Mouse embryo fibroblasts deficient for one or a combination of p53 family members were sensitized to undergo apoptosis through the expression of the adenovirus E1A oncogene. While using the E1A system facilitated our ability to perform biochemical analyses, we also examined the functions of p63 and p73 using an in vivo system in which apoptosis has been shown to be dependent on p53. Using both systems, we show here that the combined loss of p63 and p73 results in the failure of cells containing functional p53 to undergo apoptosis in response to DNA damage.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper showed that recombinant caspase-12 specifically cleaves and activates procaspase 9 in cytosolic extracts, which catalyzes cleavage of -3, which is inhibited by a specific inhibitor.

Journal ArticleDOI
TL;DR: It is reported that a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species represents an important intrinsic mechanism that mediatesCa2+ and Na+ overload in response to disturbance of redox state in cell death.

Journal ArticleDOI
04 Oct 2002-Cell
TL;DR: In vitro three-dimensional epithelial cell cultures are utilized to analyze the role of apoptosis in the formation and maintenance of a hollow glandular architecture and show that apoptosis can counteract increased proliferation to maintain luminal space.

Journal ArticleDOI
TL;DR: The molecular sequelae of PS-341 treatment in MM cells are characterized and the rationale for future clinical trials of this promising agent, in combination with conventional and novel therapies, to improve patient outcome in MM is explained.
Abstract: The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM.

Journal ArticleDOI
23 Aug 2002-Science
TL;DR: It is argued that cytokine-induced and stress-induced apoptosis act through conceptually similar pathways in which mitochondria are amplifiers of caspase activity rather than initiators of cospase activation.
Abstract: A current view is that cytotoxic stress, such as DNA damage, induces apoptosis by regulating the permeability of mitochondria. Mitochondria sequester several proteins that, if released, kill by activating caspases, the proteases that disassemble the cell. Cytokines activate caspases in a different way, by assembling receptor complexes that activate caspases directly; in this case, the subsequent mitochondrial permeabilization accelerates cell disassembly by amplifying caspase activity. We found that cytotoxic stress causes activation of caspase-2, and that this caspase is required for the permeabilization of mitochondria. Therefore, we argue that cytokine-induced and stress-induced apoptosis act through conceptually similar pathways in which mitochondria are amplifiers of caspase activity rather than initiators of caspase activation.

Journal ArticleDOI
TL;DR: During apoptosis, PARP-1 plays two opposite roles: its stimulation leads to poly(ADP-ribose) synthesis, whereas caspases cause PARP -1 cleavage and inactivation, and the fate and the possible role of these fragments during apoptosis will be discussed.
Abstract: Poly(ADP-ribosylation) is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. The best known poly(ADP-ribosylating) enzime, PARP-1, is a DNA nick sensor and uses βNAD+ to form polymers of ADP-ribose which are further bound to nuclear protein acceptors. To strictly regulate poly(ADP-ribose) turnover, its degradation is assured by the enzyme poly(ADP-ribose) glycohydrolase (PARG). During apoptosis, PARP-1 plays two opposite roles: its stimulation leads to poly(ADP-ribose) synthesis, whereas caspases cause PARP-1 cleavage and inactivation. PARP-1 proteolysis produces an 89 kDa C-terminal fragment, with a reduced catalytic activity, and a 24 kDa N-terminal peptide, which retains the DNA binding domains. The fate and the possible role of these fragments during apoptosis will be discussed.

Journal ArticleDOI
26 Sep 2002-Nature
TL;DR: Caspase-8 deficiency in humans is compatible with normal development and shows that caspases has a postnatal role in immune activation of naive lymphocytes, which leads to immunodeficiency.
Abstract: Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.

Journal ArticleDOI
03 May 2002-Cell
TL;DR: The data indicate that highly complex neoplastic lesions can be both induced and maintained in vivo by a simple combination of two interlocking molecular lesions.

Journal ArticleDOI
01 Jun 2002-Diabetes
TL;DR: Results suggest that hyperglycemia directly induces apoptotic cell death in the myocardium in vivo, mediated, at least in part, by activation of the cytochrome c-activated caspase-3 pathway, which may be triggered by ROS derived from high levels of glucose.
Abstract: Diabetic cardiomyopathy is related directly to hyperglycemia. Cell death such as apoptosis plays a critical role in cardiac pathogenesis. Whether hyperglycemia induces myocardial apoptosis, leading to diabetic cardiomyopathy, remains unclear. We tested the hypothesis that apoptotic cell death occurs in the diabetic myocardium through mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetic mice produced by streptozotocin and H9c2 cardiac myoblast cells exposed to high levels of glucose were used. In the hearts of diabetic mice, apoptotic cell death occurred as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Correspondingly, caspase-3 activation as determined by enzymatic assay and mitochondrial cytochrome c release detected by Western blotting analysis were observed. Supplementation of insulin inhibited diabetes-induced myocardial apoptosis as well as suppressed hyperglycemia. To explore whether apoptosis in diabetic hearts is related directly to hyperglycemia, we exposed cardiac myoblast H9c2 cells to high levels of glucose (22 and 33 mmol/l) in cultures. Apoptotic cell death was detected by TUNEL assay and DAPI nuclear staining. Caspase-3 activation with a concomitant mitochondrial cytochrome c release was also observed. Apoptosis or activation of caspase-3 was not observed in the cultures exposed to the same concentrations of mannitol. Inhibition of caspase-3 with a specific inhibitor, Ac-DEVD-cmk, suppressed apoptosis induced by high levels of glucose. In addition, reactive oxygen species (ROS) generation was detected in the cells exposed to high levels of glucose. These results suggest that hyperglycemia directly induces apoptotic cell death in the myocardium in vivo. Hyperglycemia-induced myocardial apoptosis is mediated, at least in part, by activation of the cytochrome c-activated caspase-3 pathway, which may be triggered by ROS derived from high levels of glucose.

Journal ArticleDOI
01 May 2002-Diabetes
TL;DR: Extended exposure to FFAs has cytostatic and pro-apoptotic effects on human pancreatic beta-cells, likely to be due to the FFA-induced reduction of intraislet glucose metabolism, and the proapoptosis effects are mostly caspase mediated, partially dependent on ceramide pathway, and possibly Bcl-2 regulated.
Abstract: In an effort to better understand the phenomenon of lipotoxicity in human β-cells, we evaluated the effects of 48-h preculture with 1.0 or 2.0 mmol/l free fatty acid (FFA) (2:1 oleate to palmitate) on the function and survival of isolated human islets and investigated some of the possible mechanisms. Compared with control islets, triglyceride content was significantly increased and insulin content and glucose-stimulated insulin release were significantly reduced in islets precultured with increased FFA concentrations. These changes were accompanied by a significant reduction of glucose utilization and oxidation. By cell death detection techniques, it was observed that exposure to FFAs induced a significant increase of the amount of dead cells. Electron microscopy showed the involvement of β-cells, with morphological appearance compatible with the presence of apoptotic phenomena. FFA-induced islet cell death was blocked by inhibition of upstream caspases and partially prevented by inhibiton of ceramide synthesis or serine protease activity, whereas inhibition of nitric oxide synthesis had no effect. RT-PCR studies revealed no major change of iNOS and Bax mRNA expression and a marked decrease of Bcl-2 mRNA expression in the islets cultured with FFA. Thus, prolonged exposure to FFAs has cytostatic and pro-apoptotic effects on human pancreatic β-cells. The cytostatic action is likely to be due to the FFA-induced reduction of intraislet glucose metabolism, and the proapoptotic effects are mostly caspase mediated, partially dependent on ceramide pathway, and possibly Bcl-2 regulated.

Journal ArticleDOI
TL;DR: This article showed that mice lacking the membrane tyrosine kinase c-mer have impaired clearance of infused apoptotic cells and develop progressive lupus-like auto-immunity, with antibodies to chromatin, DNA, and IgG.
Abstract: Mice lacking the membrane tyrosine kinase c-mer have been shown to have altered macro-phage cytokine production and defective phagocytosis of apoptotic cells despite normal phagocytosis of other particles. We show here that c-mer–deficient mice have impaired clearance of infused apoptotic cells and that they develop progressive lupus-like autoimmunity, with antibodies to chromatin, DNA, and IgG. The autoimmunity appears to be driven by endogenous antigens, with little polyclonal B cell activation. These mice should be an excellent model for studying the role of apoptotic debris as an immunogenic stimulus for systemic autoimmunity.

Journal Article
TL;DR: It is shown that endogenous Akt activity promotes breast cancer cell survival and therapeutic resistance, and that induction of Akt by chemotherapy, trastuzumab, or tamoxifen might be an early compensatory mechanism that could be exploited to increase the efficacy of these therapies.
Abstract: To evaluate the role of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in breast cancer cell survival and therapeutic resistance, we analyzed a panel of six breast cancer cell lines that varied in erbB2 and estrogen receptor status. Akt activity was constitutive in four cell lines and was associated with either PTEN mutations or erbB2 overexpression. Akt promoted breast cancer cell survival because a PI3K inhibitor, LY294002, or transient transfection of a dominant-negative Akt mutant inhibited Akt activity and increased apoptosis. When combined with therapies commonly used in breast cancer treatment, LY294002 potentiated apoptosis caused by doxorubicin, trastuzumab, paclitaxel, or etoposide. Potentiation of apoptosis by LY294002 correlated with induction of Akt by doxorubicin or trastuzumab alone that occurred before the onset of apoptosis. Similar results were observed with tamoxifen. Combining LY294002 with tamoxifen in estrogen receptor-positive cells greatly potentiated apoptosis, which was correlated with tamoxifen-induced Akt phosphorylation that preceded apoptosis. To confirm that the effects of LY294002 on chemotherapy-induced apoptosis were attributable to inhibition of Akt, we transiently transfected breast cancer cells with dominant-negative Akt and observed increased doxorubicin-induced apoptosis. Conversely, stably transfecting cells with constitutively active Akt increased Akt activity and attenuated doxorubicin-induced apoptosis. These studies show that endogenous Akt activity promotes breast cancer cell survival and therapeutic resistance, and that induction of Akt by chemotherapy, trastuzumab, or tamoxifen might be an early compensatory mechanism that could be exploited to increase the efficacy of these therapies.

Journal ArticleDOI
TL;DR: These studies indicate that chronic low-grade complex I inhibition caused by rotenone exposure induces accumulation and aggregation of α-synuclein and ubiquitin, progressive oxidative damage, and caspase-dependent death, mechanisms that may be central to PD pathogenesis.
Abstract: Chronic systemic complex I inhibition caused by rotenone exposure induces features of Parkinson's disease (PD) in rats, including selective nigrostriatal dopaminergic degeneration and formation of ubiquitin- and alpha-synuclein-positive inclusions (Betarbet et al., 2000). To determine underlying mechanisms of rotenone-induced cell death, we developed a chronic in vitro model based on treating human neuroblastoma cells with 5 nm rotenone for 1-4 weeks. For up to 4 weeks, cells grown in the presence of rotenone had normal morphology and growth kinetics, but at this time point, approximately 5% of cells began to undergo apoptosis. Short-term rotenone treatment (1 week) elevated soluble alpha-synuclein protein levels without changing message levels, suggesting that alpha-synuclein degradation was retarded. Chronic rotenone exposure (4 weeks) increased levels of SDS-insoluble alpha-synuclein and ubiquitin. After a latency of >2 weeks, rotenone-treated cells showed evidence of oxidative stress, including loss of glutathione and increased oxidative DNA and protein damage. Chronic rotenone treatment (4 weeks) caused a slight elevation in basal apoptosis and markedly sensitized cells to further oxidative challenge. In response to H2O2, there was cytochrome c release from mitochondria, caspase-3 activation, and apoptosis, all of which occurred earlier and to a much greater extent in rotenone-treated cells; caspase inhibition provided substantial protection. These studies indicate that chronic low-grade complex I inhibition caused by rotenone exposure induces accumulation and aggregation of alpha-synuclein and ubiquitin, progressive oxidative damage, and caspase-dependent death, mechanisms that may be central to PD pathogenesis.

Journal ArticleDOI
01 Jun 2002-Immunity
TL;DR: The death of superantigen-stimulated T cells in vivo is mediated by Bim and may be modulated by a decrease in Bcl-2, which is also found to be resistant to SEB-induced deletion.

Journal ArticleDOI
TL;DR: The serine protease Omi/HtrA2 is identified as a second mammalian XIAP-binding protein with a Reaper-like motif, and this protease autoprocesses to form a protein with amino-terminal homology to Smac/DIABLO and Reaper family proteins.

Journal ArticleDOI
01 Apr 2002-Leukemia
TL;DR: The induction of apoptosis by proteasome inhibitors varies between cell types but often occurs following an initial accumulation of short-lived proteins such as p53, p27, pro-apoptotic Bcl-2 family members or activation of the stress kinase JNK.
Abstract: The ubiquitin-proteasome system is an important regulator of cell growth and apoptosis. The potential of specific proteasome inhibitors to act as novel anti-cancer agents is currently under intensive investigation. Several proteasome inhibitors exert anti-tumour activity in vivo and potently induce apoptosis in tumour cells in vitro, including those resistant to conventional chemotherapeutic agents. By inhibiting NF-κB transcriptional activity, proteasome inhibitors may also prevent angiogenesis and metastasis in vivo and further increase the sensitivity of cancer cells to apoptosis. Proteasome inhibitors also exhibit some level of selective cytotoxicity to cancer cells by preferentially inducing apoptosis in proliferating or transformed cells or by overcoming deficiencies in growth-inhibitory or pro-apoptotic molecules. High expression of oncogene products like c-Myc also makes cancer cells more susceptible to proteasome inhibitor-induced apoptosis. The induction of apoptosis by proteasome inhibitors varies between cell types but often occurs following an initial accumulation of short-lived proteins such as p53, p27, pro-apoptotic Bcl-2 family members or activation of the stress kinase JNK. These initial events often result in a perturbation of mitochondria with concomitant release of cytochrome c and activation of the Apaf-1 containing apoptosome complex. This results in activation of the apical caspase-9 followed by activation of effector caspases-3 and -7, which are responsible for the biochemical and morphological changes associated with apoptosis.

Journal ArticleDOI
TL;DR: ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway, and the molecular requirements for this Apf-1 and cytochrome c-independent apoptosis pathway are defined.

Journal ArticleDOI
01 Feb 2002-Gut
TL;DR: Infusion of infliximab in steroid refractory patients with Crohn's disease induced a clinical response but did not influence expression of activation markers, homing receptors, memory cells, Fas expression, or Bax/Bcl-2 expression on peripheral blood T lymphocytes, indicating a rapid and specific increase in apoptosis of T lymphocyte in the gut mucosa.
Abstract: Background and aims: Treatment with infliximab induces remission in about 70% of patients with steroid refractory Crohn9s disease. Because Crohn9s disease is considered to be mediated by uncontrolled activation of mucosal T lymphocytes, we hypothesised that infliximab could induce apoptosis of T lymphocytes. Methods: Induction of apoptosis in vivo was studied in 10 patients with therapy refractory Crohn9s disease. In vitro, resting or stimulated Jurkat T cells were incubated with infliximab. Results: Infusion of infliximab (5 mg/kg) in steroid refractory patients with Crohn9s disease induced a clinical response in 9/10 patients but did not influence expression of activation markers, homing receptors, memory cells, Fas expression, or Bax/Bcl-2 expression on peripheral blood T lymphocytes. In contrast, a significant increase in CD3 and TUNEL positive cells within colonic biopsies was detected 24 hours after infusion of infliximab, suggesting that infliximab stimulates apoptosis of activated T lymphocytes but not of resting T cells. To test this hypothesis, the effects of infliximab on Jurkat T cells were investigated. We observed that infliximab induced apoptosis and an increase in the Bax/Bcl-2 ratio of CD3/CD28 stimulated Jurkat T cells but not of unstimulated Jurkat cells. Conclusions: Our data indicate that infliximab treatment causes a rapid and specific increase in apoptosis of T lymphocytes in the gut mucosa. These findings may explain the rapid and sustained therapeutic effects of infliximab in Crohn9s disease.