scispace - formally typeset
Search or ask a question

Showing papers on "Apoptosis published in 2013"


Journal ArticleDOI
TL;DR: Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
Abstract: Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.

2,127 citations


Journal ArticleDOI
TL;DR: It is suggested that caspase-9 is required for mitochondrial morphological changes and ROS production by cleaving and activating Bid into tBid, as well as for ROS production following serum withdrawal.
Abstract: Apoptosis is a form of programmed cell death that is regulated by the Bcl-2 family and caspase family of proteins. The caspase cascade responsible for executing cell death following cytochrome c release is well described; however the distinct roles of caspases-9, -3 and -7 during this process are not completely defined. Here we demonstrate several unique functions for each of these caspases during cell death. Specific inhibition of caspase-9 allows for efficient release of cytochrome c, but blocks changes in mitochondrial morphology and ROS production. We show that caspase-9 can cleave Bid into tBid at amino acid 59 and that this cleavage of Bid is required for ROS production following serum withdrawal. We also demonstrate that caspase-3-deficient MEFs are less sensitive to intrinsic cell death stimulation, yet have higher ROS production. In contrast, caspase-7-deficient MEFs are not resistance to intrinsic cell death, but remain attached to the ECM. Taken together, these data suggest that caspase-9 is required for mitochondrial morphological changes and ROS production by cleaving and activating Bid into tBid. After activation by caspase-9, caspase-3 inhibits ROS production and is required for efficient execution of apoptosis, while effector caspase-7 is required for apoptotic cell detachment.

831 citations


Journal ArticleDOI
TL;DR: Treatment of SMARCB1 mutant MRTs with a potent, selective, and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity leads to dose-dependent regression of MRT's with correlative diminution of intratumoral trimethylation levels of lysine 27 on histone H3, and prevention of tumor regrowth after dosing cessation.
Abstract: Inactivation of the switch/sucrose nonfermentable complex component SMARCB1 is extremely prevalent in pediatric malignant rhabdoid tumors (MRTs) or atypical teratoid rhabdoid tumors. This alteration is hypothesized to confer oncogenic dependency on EZH2 in these cancers. We report the discovery of a potent, selective, and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity, (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4′-(morpholinomethyl)-[1,1′-biphenyl]-3-carboxamide). The compound induces apoptosis and differentiation specifically in SMARCB1-deleted MRT cells. Treatment of xenograft-bearing mice with (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4′-(morpholinomethyl)-[1,1′-biphenyl]-3-carboxamide) leads to dose-dependent regression of MRTs with correlative diminution of intratumoral trimethylation levels of lysine 27 on histone H3, and prevention of tumor regrowth after dosing cessation. These data demonstrate the dependency of SMARCB1 mutant MRTs on EZH2 enzymatic activity and portend the utility of EZH2-targeted drugs for the treatment of these genetically defined cancers.

652 citations


Journal ArticleDOI
TL;DR: The results in the present study indicate that hucMSC-ex can repair cisplatin-induced AKI in rats and NRK-52E cell injury by ameliorating oxidative stress and cell apoptosis, promoting cell proliferation in vivo and in vitro.
Abstract: Administration of bone marrow mesenchymal stem cells (MSCs) or secreted microvesicles improves recovery from acute kidney injury (AKI). However, the potential roles and mechanisms are not well understood. In the current study, we focused on the protective effect of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) on cisplatin-induced nephrotoxicity in vivo and in vitro. We constructed cisplatin-induced AKI rat models. At 24 h after treatment with cisplatin, hucMSC-ex were injected into the kidneys via the renal capsule; human lung fibroblast (HFL-1)-secreted exosomes (HFL-1-ex) were used as controls. All animals were killed at day 5 after administration of cisplatin. Renal function, histological changes, tubular apoptosis and proliferation, and degree of oxidative stress were evaluated. In vitro, rat renal tubular epithelial (NRK-52E) cells were treated with or without cisplatin and after 6 h treated with or without exosomes. Cells continued to be cultured for 24 h, and were then harvested for western blotting, apoptosis and detection of degree of oxidative stress. After administration of cisplatin, there was an increase in blood urea nitrogen (BUN) and creatinine (Cr) levels, apoptosis, necrosis of proximal kidney tubules and formation of abundant tubular protein casts and oxidative stress in rats. Cisplatin-induced AKI rats treated with hucMSC-ex, however, showed a significant reduction in all the above indexes. In vitro, treatment with cisplatin alone in NRK-52E cells resulted in an increase in the number of apoptotic cells, oxidative stress and activation of the p38 mitogen-activated protein kinase (p38MAPK) pathway followed by a rise in the expression of caspase 3, and a decrease in cell multiplication, while those results were reversed in the hucMSCs-ex-treated group. Furthermore, it was observed that hucMSC-ex promoted cell proliferation by activation of the extracellular-signal-regulated kinase (ERK)1/2 pathway. The results in the present study indicate that hucMSC-ex can repair cisplatin-induced AKI in rats and NRK-52E cell injury by ameliorating oxidative stress and cell apoptosis, promoting cell proliferation in vivo and in vitro. This suggests that hucMSC-ex could be exploited as a potential therapeutic tool in cisplatin-induced nephrotoxicity.

517 citations


Journal ArticleDOI
TL;DR: There is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptoticcell death, and it is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.
Abstract: Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.

504 citations


Journal ArticleDOI
TL;DR: This review concisely summarizes the role of this pro-inflammatory cytokine during inflammation, focused mainly on TNF-α intracellular signaling and its influence on the typical inflammatory features in the organism.
Abstract: Introduction Inflammation is a very important part of innate immunity and is regulated in many steps. One such regulating step is the cytokine network, where tumor necrosis factor α (TNF-α) plays one of the most important roles.

502 citations


Journal ArticleDOI
TL;DR: Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules, which leads to lysosomal membrane permeabilization.
Abstract: Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.

474 citations


Journal ArticleDOI
TL;DR: This study focuses on the understanding of the steps involved in prompt cell clearance in vivo, including the sensing of corpses via "find me" signals, the recognition of corpses through "eat me" messages, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events "immunologically silent".
Abstract: Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via “find me” signals, the recognition of corpses via “eat me” signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events “immunologically silent.” This study focuses on our understanding of these steps.

470 citations


Journal ArticleDOI
TL;DR: A unique form of autophagy-dependent cell death is identified, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na+,K+-ATPase in its regulation is identified.
Abstract: A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed “autosis,” has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia–ischemia in vivo. A chemical screen of ∼5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na+,K+-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na+,K+-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na+,K+-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.

469 citations


Journal ArticleDOI
22 Feb 2013-Science
TL;DR: It is reported that caspase-11 is required for innate immunity to cytosolic, but not vacuolar, bacteria and is critical for surviving exposure to ubiquitous environmental pathogens.
Abstract: Caspases are either apoptotic or inflammatory. Among inflammatory caspases, caspase-1 and -11 trigger pyroptosis, a form of programmed cell death. Whereas both can be detrimental in inflammatory disease, only caspase-1 has an established protective role during infection. Here, we report that caspase-11 is required for innate immunity to cytosolic, but not vacuolar, bacteria. Although Salmonella typhimurium and Legionella pneumophila normally reside in the vacuole, specific mutants (sifA and sdhA, respectively) aberrantly enter the cytosol. These mutants triggered caspase-11, which enhanced clearance of S. typhimurium sifA in vivo. This response did not require NLRP3, NLRC4, or ASC inflammasome pathways. Burkholderia species that naturally invade the cytosol also triggered caspase-11, which protected mice from lethal challenge with B. thailandensis and B. pseudomallei. Thus, caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens.

466 citations


Journal ArticleDOI
TL;DR: Before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells.
Abstract: BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.

Journal ArticleDOI
26 Jul 2013-Science
TL;DR: The Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli and has evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.
Abstract: A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an “eat me” signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8 −/− cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.

Journal ArticleDOI
TL;DR: The main objective of this review is to focus on the different aspects of HNE-induced cell death, with a particular emphasis on apoptosis.
Abstract: During the last three decades, 4-hydroxy-2-nonenal (HNE), a major α,β-unsaturated aldehyde product of n-6 fatty acid oxidation, has been shown to be involved in a great number of pathologies such as metabolic diseases, neurodegenerative diseases and cancers. These multiple pathologies can be explained by the fact that HNE is a potent modulator of numerous cell processes such as oxidative stress signaling, cell proliferation, transformation or cell death. The main objective of this review is to focus on the different aspects of HNE-induced cell death, with a particular emphasis on apoptosis. HNE is a special apoptotic inducer because of its abilities to form protein adducts and to propagate oxidative stress. It can stimulate intrinsic and extrinsic apoptotic pathways and interact with typical actors such as tumor protein 53, JNK, Fas or mitochondrial regulators. At the same time, due to its oxidant status, it can also induce some cellular defense mechanisms against oxidative stress, thus being involved in its own detoxification. These processes in turn limit the apoptotic potential of HNE. These dualities can imbalance cell fate, either toward cell death or toward survival, depending on the cell type, the metabolic state and the ability to detoxify.

Journal ArticleDOI
TL;DR: Cell death is rare in sepsis-induced cardiac dysfunction, but cardiomyocyte injury occurs, and the degree of cell injury and death does not account for severity of sepsi-induced organ dysfunction.
Abstract: Rationale: The mechanistic basis for cardiac and renal dysfunction in sepsis is unknown. In particular, the degree and type of cell death is undefined.Objectives: To evaluate the degree of sepsis-induced cardiomyocyte and renal tubular cell injury and death.Methods: Light and electron microscopy and immunohistochemical staining for markers of cellular injury and stress, including connexin-43 and kidney-injury-molecule-1 (Kim-1), were used in this study.Measurements and Main Results: Rapid postmortem cardiac and renal harvest was performed in 44 septic patients. Control hearts were obtained from 12 transplant and 13 brain-dead patients. Control kidneys were obtained from 20 trauma patients and eight patients with cancer. Immunohistochemistry demonstrated low levels of apoptotic cardiomyocytes (<1–2 cells per thousand) in septic and control subjects and revealed redistribution of connexin-43 to lateral membranes in sepsis (P < 0.020). Electron microscopy showed hydropic mitochondria only in septic specimens...

Journal ArticleDOI
TL;DR: A global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress is provided and the participation of the BCL-2 family of proteins and ER calcium release is highlighted.

Journal ArticleDOI
TL;DR: Findings show how Cy exerts its toxic effects on ovarian cells, as well as a potential method of protecting the ovaries and preserving fertility, and an experimental drug called AS101 shows potential as an ovarian-protective agent, which may be able to preserve fertility in female cancer patients.
Abstract: Premature ovarian failure and infertility are major side effects of chemotherapy treatments in young cancer patients A more thorough understanding of the mechanism behind chemotherapy-induced follicle loss is necessary to develop new methods to preserve fertility in these patients We show that the alkylating agent cyclophosphamide (Cy) activates the growth of the quiescent primordial follicle population in mice, resulting in loss of ovarian reserve Despite the initial massive apoptosis observed in growing, though not in resting, follicles of Cy-treated mice, differential follicle counts demonstrated both a decrease in primordial follicles and an increase in early growing follicles Immunohistochemistry showed that granulosa cells were undergoing proliferation Analysis of the phosphatidylinositol 3-kinase signaling pathway demonstrated that Cy increased phosphorylation of proteins that stimulate follicle activation in the oocytes and granulosa cells Coadministration of an immunomodulator, AS101, reduced follicle activation, thereby increasing follicle reserve and rescuing fertility after Cy, and also increased the efficacy of Cy against breast cancer cell lines These findings suggest that the mechanism in Cy-induced loss of ovarian reserve is accelerated primordial follicle activation, which results in a “burnout” effect and follicle depletion By preventing this activation, AS101 shows potential as an ovarian-protective agent, which may be able to preserve fertility in female cancer patients

Journal ArticleDOI
18 Dec 2013-PLOS ONE
TL;DR: It is demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo and may contribute to a better patient prognosis in the future.
Abstract: Purpose Nonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo. Methods Using chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells. Results We assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (P<0.01). The growth-inhibitory effects of NEAPP-AM were completely inhibited by N-acetyl cysteine treatment, while L-buthionine-[S, R]-sulfoximine, an inhibitor of the ROS scavenger used with NEAPP-AM, decreased cell viability by 85% after NEAPP-AM 60-sec treatment(P<0.05) and by 52% after 120 sec, compared to the control (P<0.01). In the murine subcutaneous tumor-formation model, NEAPP-AM injection resulted in an average inhibition of the NOS2 cell-inoculated tumor by 66% (P<0.05) and NOS2TR cell-inoculated tumor by 52% (P<0.05), as compared with the control. Conclusion We demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future.

Journal ArticleDOI
15 Nov 2013-Science
TL;DR: It is reported here that Staphylococcus aureus escapes these defenses by converting NETs to deoxyadenosine, which triggers the caspase-3–mediated death of immune cells, and evolved to anticipate host defenses and to repurpose them for the destruction of the immune system.
Abstract: One spectacular response to bacterial infection is the release of NETs (neutrophil extracellular traps) of DNA from polymorphonuclear leukocytes that immobilize the pathogens and prevent phagocytosis by macrophages. Staphylococcus aureus evades NETs by degrading the DNA into deoxyadenosine (dAdo). Thammavongsa et al. (p. [863][1]) found that dAdo also promotes immune cell death, which appears to ensure the exclusion of macrophages from the center of abscesses within which the bacteria survive. [1]: /lookup/doi/10.1126/science.1242255

Journal ArticleDOI
TL;DR: The findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell and could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Abstract: The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reac...

Journal ArticleDOI
TL;DR: GAS5 promotes the apoptosis of prostate cells, and exonic sequence, i.e. GAS5 lncRNA, is sufficient to mediate this activity, which may reduce the effectiveness of chemotherapeutic agents.

OtherDOI
TL;DR: Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise, and a new form of "programmed" necrosis has been described: the role of necroptosis in the liver has yet to be explored.
Abstract: Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.

Journal ArticleDOI
TL;DR: A large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9, which stimulates formation of the "apoptosome" in stressed cells.
Abstract: Significance: The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to neurodegeneration are associated with either too little or too much apoptosis. Recent Advances: B cell lymphoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP) and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the “apoptosome.” This large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and including) formation of the apoptosome are subject to various forms of post-translational modification, including proteolysis, phosphorylation,...

Journal ArticleDOI
05 Aug 2013-PLOS ONE
TL;DR: Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level and decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuONPs induced apoptosis.
Abstract: Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.

Journal ArticleDOI
11 Sep 2013-PLOS ONE
TL;DR: The results indicate that FOXO1, FOXO3a and FOXO4, are indispensable for Sirt1-dependent cell survival against oxidative stress, although deacetylation of p53 has also some role for cell protective function of SIRT1.
Abstract: Excessive reactive oxygen species (ROS) induce apoptosis and are associated with various diseases and with aging. SIRT1 (sirtuin-1), an NAD+-dependent protein deacetylase, decreases ROS levels and participates in cell survival under oxidative stress conditions. SIRT1 modulates the transcription factors p53, a tumor suppressor and inducer of apoptosis, and the forkhead O (FOXO) family, both of which play roles for cell survival and cell death. In this study, we aimed to know which is working greatly among p53 and FOXOs transcription factors in SIRT1’s cell protective functions under oxidative stress conditions. The antimycin A-induced increase in ROS levels and apoptosis was enhanced by SIRT1 inhibitors nicotinamide and splitomicin, whereas it was suppressed by a SIRT1 activator, resveratrol, and a SIRT1 cofactor, NAD+. SIRT1-siRNA abolished the effects of splitomicin and resveratrol. p53-knockdown experiment in C2C12 cells and experiment using p53-deficient HCT116 cells showed that splitomicin and resveratrol modulated apoptosis by p53-dependent and p53-independent pathways. In p53-independent cell protective pathway, we found that FOXO1, FOXO3a, and FOXO4 were involved in SOD2’s upregulation by resveratrol. The knockdown of these three FOXOs by siRNAs completely abolished the SOD2 induction, ROS reduction, and anti-apoptotic function of resveratrol. Our results indicate that FOXO1, FOXO3a and FOXO4, are indispensable for SIRT1-dependent cell survival against oxidative stress, although deacetylation of p53 has also some role for cell protective function of SIRT1.

Journal ArticleDOI
TL;DR: New evidence has suggested a role of mitochondrial fragmentation in the pathogenesis of renal diseases including acute kidney injury and diabetic nephropathy, and a better understanding of the regulation of mitochondrial dynamics and its pathogenic changes may unveil novel therapeutic strategies.

Journal ArticleDOI
TL;DR: Increased cellular radiosensitivity due to compromised DNA repair capacity is likely to contribute to the improved outcome of patients with HPV/p16(INK4a)-positive tumors when treated by radiotherapy.

Journal ArticleDOI
TL;DR: Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer, and downregulated expression of M EG3 inhibited cell apoptosis, whereas Autophagy inhibition increased Meg3-knockdown cell apoptotic.
Abstract: Maternally Expressed Gene 3 (MEG3) is an imprinted gene that encodes a long non-coding RNA (lncRNA) associated with tumorigenesis. Autophagy is activated in cancer cells and contributes to tumor cell survival. However, little is known about whether MEG3 regulates bladder cancer development by controlling autophagy. In the study, we found that MEG3 levels were significantly reduced in bladder cancer tissues compared with normal controls, and autophagy activity was increased in bladder cancer tissues. A significant negative correlation was observed between MEG3 levels and LC3-II (autophagy marker) levels in vivo. We further demonstrated that MEG3 markedly suppressed autophagy activation, whereas MEG3 knockdown activated autophagy in human bladder cancer cell lines. Downregulated expression of MEG3 inhibited cell apoptosis, whereas autophagy inhibition increased MEG3-knockdown cell apoptosis. MEG3 knockdown also increased cell proliferation. More importantly, autophagy inhibition abrogated MEG3 knockdown-induced cell proliferation. These data demonstrated that downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer.

Journal ArticleDOI
01 Oct 2013-Oncogene
TL;DR: Representing an efficient Nrf2 inhibitor capable of blocking NRF2-dependent proteasome activity and thereby apoptosis protection in pancreatic cancer cells, trig might be beneficial in improving anticancer therapy.
Abstract: Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and α5/psma5) and reduced proteasome activity in all cell lines tested. These blocking effects were absent after treatment with Nrf2 siRNA, a condition in which proteasomal gene expression and proteasome activity were already decreased, whereas siRNA against the related transcription factor Nrf1 did not affect proteasome activity and the inhibitory effect of trig. Depending on both Nrf2 and proteasomal gene expression, the sensitivity of all cell lines to anticancer drugs and TRAIL-induced apoptosis was enhanced by trig. Moreover, greater antitumor responses toward anticancer drug treatment were observed in tumor-bearing mice when receiving trig. In conclusion, representing an efficient Nrf2 inhibitor capable of blocking Nrf2-dependent proteasome activity and thereby apoptosis protection in pancreatic cancer cells, trig might be beneficial in improving anticancer therapy.

Journal ArticleDOI
15 Aug 2013-Oncogene
TL;DR: Current knowledge about the response to DNA damage and subsequent signaling is reviewed, with particular attention to cell death induction and the molecular switches between different cell death modalities following damage.
Abstract: The consequences of DNA damage depend on the cell type and the severity of the damage. Mild DNA damage can be repaired with or without cell-cycle arrest. More severe and irreparable DNA injury leads to the appearance of cells that carry mutations or causes a shift towards induction of the senescence or cell death programs. Although for many years it was argued that DNA damage kills cells via apoptosis or necrosis, technical and methodological progress during the last few years has helped to reveal that this injury might also activate death by autophagy or mitotic catastrophe, which may then be followed by apoptosis or necrosis. The molecular basis underlying the decision-making process is currently the subject of intense investigation. Here, we review current knowledge about the response to DNA damage and subsequent signaling, with particular attention to cell death induction and the molecular switches between different cell death modalities following damage.

Journal ArticleDOI
TL;DR: This review focuses on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions, and concludes that 4-hydroxy-2-nonenal exerts an anti-cancer effect, at low doses.
Abstract: A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA) and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE) is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation, and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.