scispace - formally typeset
Search or ask a question
Topic

Apoptosis

About: Apoptosis is a research topic. Over the lifetime, 115486 publications have been published within this topic receiving 4887151 citations. The topic is also known as: GO:0006915 & apoptotic cell death.


Papers
More filters
Journal ArticleDOI
10 Mar 1995-Science
TL;DR: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells.
Abstract: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells. Various cells express Fas, whereas FasL is expressed predominantly in activated T cells. In the immune system, Fas and FasL are involved in down-regulation of immune reactions as well as in T cell-mediated cytotoxicity. Malfunction of the Fas system causes lymphoproliferative disorders and accelerates autoimmune diseases, whereas its exacerbation may cause tissue destruction.

4,190 citations

Journal ArticleDOI
06 Jul 1995-Nature
TL;DR: A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
Abstract: The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.

4,096 citations

Journal ArticleDOI
11 Jul 2002-Nature
TL;DR: It is reported that Hmgb1-/- necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours, and cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.
Abstract: High mobility group 1 (HMGB1) protein is both a nuclear factor and a secreted protein. In the cell nucleus it acts as an architectural chromatin-binding factor that bends DNA and promotes protein assembly on specific DNA targets. Outside the cell, it binds with high affinity to RAGE (the receptor for advanced glycation end products) and is a potent mediator of inflammation. HMGB1 is secreted by activated monocytes and macrophages, and is passively released by necrotic or damaged cells. Here we report that Hmgb1(-/-) necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours. Apoptotic cells do not release HMGB1 even after undergoing secondary necrosis and partial autolysis, and thus fail to promote inflammation even if not cleared promptly by phagocytic cells. In apoptotic cells, HMGB1 is bound firmly to chromatin because of generalized underacetylation of histone and is released in the extracellular medium (promoting inflammation) if chromatin deacetylation is prevented. Thus, cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.

3,847 citations

Journal ArticleDOI
22 Nov 1990-Nature
TL;DR: It is demonstrated that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k) being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.
Abstract: The t(14; 18) chromosomal translocation of human follicular B-cell lymphoma juxtaposes the bcl-2 gene with the immunoglobulin heavy chain locus. The bcl-2 immunoglobulin fusion gene is markedly deregulated resulting in inappropriately elevated levels of bcl-2 RNA and protein. Transgenic mice bearing a bcl-2 immunoglobulin minigene demonstrate a polyclonal expansion of resting yet responsive IgM-IgD B cells which display prolonged cell survival but no increase in cell cycling. Moreover, deregulated bcl-2 extends the survival of certain haematopoietic cell lines following growth-factor deprivation. By using immunolocalization studies we now demonstrate that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k). Overexpression of Bcl-2 blocks the apoptotic death of a pro-B-lymphocyte cell line. Thus, Bcl-2 is unique among proto-oncogenes, being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.

3,773 citations

Journal ArticleDOI
21 Aug 1998-Cell
TL;DR: The purification of a cytosolic protein that induces cytochrome c release from mitochondria in response to caspase-8, the apical caspases activated by cell surface death receptors such as Fas and TNF is reported.

3,711 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
95% related
Signal transduction
122.6K papers, 8.2M citations
94% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Receptor
159.3K papers, 8.2M citations
89% related
Gene expression
113.3K papers, 5.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
202312,754
202215,476
20215,336
20206,039
20195,955