scispace - formally typeset
Search or ask a question
Topic

Application service provider

About: Application service provider is a research topic. Over the lifetime, 2545 publications have been published within this topic receiving 63208 citations.


Papers
More filters
Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

Posted Content
TL;DR: This article reviews the "Grid problem," and presents an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In this article, we define this new field. First, we review the "Grid problem," which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources-what we refer to as virtual organizations. In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. Next, we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. We describe requirements that we believe any such mechanisms must satisfy, and we discuss the central role played by the intergrid protocols that enable interoperability among different Grid systems. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

3,595 citations

Journal ArticleDOI
TL;DR: The definition of MEC, its advantages, architectures, and application areas are provided; where the security and privacy issues and related existing solutions are also discussed.
Abstract: Mobile edge computing (MEC) is an emergent architecture where cloud computing services are extended to the edge of networks leveraging mobile base stations. As a promising edge technology, it can be applied to mobile, wireless, and wireline scenarios, using software and hardware platforms, located at the network edge in the vicinity of end-users. MEC provides seamless integration of multiple application service providers and vendors toward mobile subscribers, enterprises, and other vertical segments. It is an important component in the 5G architecture which supports variety of innovative applications and services where ultralow latency is required. This paper is aimed to present a comprehensive survey of relevant research and technological developments in the area of MEC. It provides the definition of MEC, its advantages, architectures, and application areas; where we in particular highlight related research and future directions. Finally, security and privacy issues and related existing solutions are also discussed.

1,815 citations

Posted Content
TL;DR: This paper proposes CloudSim: an extensible simulation toolkit that enables modelling and simulation of Cloud computing environments and allows simulation of multiple Data Centers to enable a study on federation and associated policies for migration of VMs for reliability and automatic scaling of applications.
Abstract: Cloud computing aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user QoS (Quality of Service) requirements. Cloud applications have different composition, configuration, and deployment requirements. Quantifying the performance of resource allocation policies and application scheduling algorithms at finer details in Cloud computing environments for different application and service models under varying load, energy performance (power consumption, heat dissipation), and system size is a challenging problem to tackle. To simplify this process, in this paper we propose CloudSim: an extensible simulation toolkit that enables modelling and simulation of Cloud computing environments. The CloudSim toolkit supports modelling and creation of one or more virtual machines (VMs) on a simulated node of a Data Center, jobs, and their mapping to suitable VMs. It also allows simulation of multiple Data Centers to enable a study on federation and associated policies for migration of VMs for reliability and automatic scaling of applications.

1,033 citations

Proceedings ArticleDOI
21 Jun 2009
TL;DR: CloudSim as mentioned in this paper is an extensible simulation toolkit that enables modelling and simulation of cloud computing environments, and it supports the creation of one or more virtual machines (VMs) on a simulated node of a Data Center, jobs, and their mapping to suitable VMs.
Abstract: Cloud computing aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user QoS (Quality of Service) requirements. Cloud applications have different composition, configuration, and deployment requirements. Quantifying the performance of resource allocation policies and application scheduling algorithms at finer details in Cloud computing environments for different application and service models under varying load, energy performance (power consumption, heat dissipation), and system size is a challenging problem to tackle. To simplify this process, in this paper we propose CloudSim: an extensible simulation toolkit that enables modelling and simulation of Cloud computing environments. The CloudSim toolkit supports modelling and creation of one or more virtual machines (VMs) on a simulated node of a Data Center, jobs, and their mapping to suitable VMs. It also allows simulation of multiple Data Centers to enable a study on federation and associated policies for migration of VMs for reliability and automatic scaling of applications.

898 citations


Network Information
Related Topics (5)
The Internet
213.2K papers, 3.8M citations
81% related
Information system
107.5K papers, 1.8M citations
79% related
Social network
42.9K papers, 1.5M citations
78% related
Supply chain
84.1K papers, 1.7M citations
77% related
Competitive advantage
46.6K papers, 1.5M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
20216
202014
201911
201813
201730