scispace - formally typeset
Search or ask a question

Showing papers on "Aquatic locomotion published in 2011"


Journal ArticleDOI
TL;DR: The ropefish and another elongate amphibious fish, the eel, consistently exhibit movements characterized by ‘path following’ when moving on land, which suggests that elongate fishes exhibit functional convergence during terrestrial locomotion.
Abstract: Many amphibious organisms undergo repeated aquatic to terrestrial transitions during their lifetime; limbless, elongate organisms that make such transitions must rely on axial-based locomotion in both habitats. How is the same anatomical structure employed to produce an effective behavior across such disparate habitats? Here, we examine an elongate amphibious fish, the ropefish (Erpetoichthys calabaricus), and ask: (1) how do locomotor movements change during the transition between aquatic and terrestrial environments and (2) do distantly related amphibious fishes demonstrate similar modes of terrestrial locomotion? Ropefish were examined moving in four experimental treatments (in which the water level was to lowered mimic the transition between environments) that varied from fully aquatic to fully terrestrial. Kinematic parameters (lateral excursion, wavelength, amplitude and frequency) were calculated for points along the midline of the body and compared across treatments. Terrestrial locomotion in the ropefish is characterized by long, slow, large-amplitude undulations down the length of the body; in contrast, aquatic locomotion is characterized by short-wavelength, small-amplitude, high-frequency undulations that gradually increase in an anterior to posterior direction. Experimental treatments with intermediate water levels were more similar to aquatic locomotion in that they demonstrated an anterior to posterior pattern of increasing lateral excursion and wave amplitude, but were more similar to terrestrial locomotion with regard to wavelength, which did not change in an anterior to posterior direction. Finally, the ropefish and another elongate amphibious fish, the eel, consistently exhibit movements characterized by 'path following' when moving on land, which suggests that elongate fishes exhibit functional convergence during terrestrial locomotion.

49 citations


Proceedings ArticleDOI
09 May 2011
TL;DR: This work investigated how the platform can discover optimal stiffness distribution along its body in response to different frequency and amplitude of actuation, and showed that a heterogeneous stiffness distribution - each joint having a different value - outperforms a homogeneous one in producing thrust.
Abstract: Fish excel in their swimming capabilities. These result from a dynamic interplay of actuation, passive properties of fish body, and interaction with the surrounding fluid. In particular, fish are able to exploit wakes that are generated by objects in flowing water. A powerful demonstration that this is largely due to passive body properties are studies on dead trout. Inspired by that, we developed a multi joint swimming platform that explores the potential of a passive dynamic mechanism. The platform has one actuated joint only, followed by three passive joints whose stiffness can be changed online, individually, and can be set to an almost arbitrary nonlinear stiffness profile. In a set of experiments, using online optimization, we investigated how the platform can discover optimal stiffness distribution along its body in response to different frequency and amplitude of actuation. We show that a heterogeneous stiffness distribution - each joint having a different value - outperforms a homogeneous one in producing thrust. Furthermore, different gaits emerged in different settings of the actuated joint. This work illustrates the potential of online adaption of passive body properties, leading to optimized swimming, especially in an unsteady environment.

29 citations


Journal Article
TL;DR: In this article, the authors discuss the fluid mechanics governing the locomotion of fishes and discuss the typical classification of their swimming modes based on the fraction of their body that undergoes such undulatory motions.
Abstract: | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.

5 citations