Topic
Aqueous solution
About: Aqueous solution is a research topic. Over the lifetime, 189538 publications have been published within this topic receiving 3482836 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes, and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods.
Abstract: Kinetic data for the radicals H⋅ and ⋅OH in aqueous solution,and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes.
9,887 citations
Journal Article•
8,713 citations
TL;DR: A modification of the naphthalene-dioxane-PPO liquid scintillator has been described which will allow up to 3.0 ml of an aqueous solution to be counted as mentioned in this paper.
Abstract: A modification of the naphthalene-dioxane-PPO liquid scintillator has been described which will allow up to 3.0 ml of an aqueous solution to be counted. The efficiency of this method in the presence of 1.0 ml water is 65.6% for C 14 and 11.7% for tritiated water. This liquid scintillator has been used to count carbon-14 and tritium in urine, plasma, and liver homogenate. The effect of isotope concentration, solute concentration, and the presence of acids and bases on the count rate has been investigated.
7,634 citations
TL;DR: It is found that as the surface charge of the lipid lamellae is increased, the amount of cation per μmle of lipid increases, and the phospholipid liquid crystalline structures appear to “bind” or “capture” cations.
Abstract: The diffusion of univalent cations and anions out of spontaneously formed liquid crystals of lecithin is remarkably similar to the diffusion of such ions across biological membranes. If the unit structure of the liquid crystal is accepted as being that of a bimolecular leaflet, then these leaflets have been shown to be many orders of magnitude more permeable to anions than to cations. The diffusion rate for cations is very significantly controlled by the sign and magnitude of the surface charge at the water/lipid interface. There is a decrease of the diffusion rate for cations as the negative charge on the lipid structure decreases—which diminishes to zero for a positively charged membrane—the diffusion rate of anions remaining very high. The exchange diffusion rate of Cl− and I− was greater than that of F−, NO3−, SO42− and HPO42− but no significant differences were detectable for the cation series, Li+, Na+, K+, Rb+ and choline. The membranes are very permeable to water. Because the diffusion rate of cations is low, the phospholipid liquid crystalline structures appear to “bind” or “capture” cations. It is found that as the surface charge of the lipid lamellae is increased, the amount of cation per μmle of lipid increases. It is argued that if the cation is sequestered in aqueous compartments between the bimolecular leaflets, and if the thickness of the aqueous compartments is determined by the surface charge density of the lipid head groups and by the ionic strength of the aqueous phase in accordance with double-layer theory, the amount of cation trapped would also be expected to vary.
4,341 citations
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.
3,692 citations