scispace - formally typeset
Search or ask a question

Showing papers on "Arabidopsis published in 1991"


Journal ArticleDOI
TL;DR: This DNA transformation competent genomic library should expedite gene isolation, by gene rescue, in multicel–lular organisms like Arabidopsis, as with the unicellular organisms Escherichia coli and Saccharomyces cerevisiae.
Abstract: We have constructed a nuclear genomic library from the cruciferous plant Arabidopsis thaliana ecotype Columbia in a cosmid vector, pLZO3, and a host organism, Agrobacterium tumefaciens AGL1, which can directly DNA-transform the parent organism, Arabidopsis. The broad host range cosmid pLZO3 carries a gentamicin acetyltransferase gene as bacterial selective marker and tandem, chimeric neomycin and streptomycin phosphotransferase genes as plant selective markers. Agrobacterium AGL1 carries the hypervirulent, attenuated tumor-inducing plasmid pTiBo542 from which T-region DNA sequences have been precisely deleted, allowing optimal DNA transformation of many dicotyledonous plants. Agrobacterium AGL1 also carries an insertion mutation in its recA general recombination gene, which stabilizes the recombinant plasmids. The Arabidopsis genomic library consists of some 21,600 clones gridded onto 96-well microtiter dishes and, if random, carries at least three genomic equivalents. When probed for the presence of several Arabidopsis low copy-number genes, the genomic library seems representative. As with the unicellular organisms Escherichia coli and Saccharomyces cerevisiae, this DNA transformation competent genomic library should expedite gene isolation, by gene rescue, in multicellular organisms like Arabidopsis.

1,031 citations


Journal ArticleDOI
TL;DR: A differential response of the mutants to environmental factors and their subdivision into epistatic groups is discussed in relation to a causal model for floral initiation in Arabidopsis thaliana.
Abstract: Monogenic mutants of the early ecotype Landsberg erecta were selected on the basis of late flowering under long day (LD) conditions after treatment with ethyl methanesulphonate or irradiation. In addition to later flowering the number of rosette and cauline leaves is proportionally higher in all mutants, although the correlation coefficient between the two parameters is not the same for all genotypes. Forty-two independently induced mutants were found to represent mutations at 11 loci. The mutations were either recessive, intermediate (co locus) or almost completely dominant (fwa locus). The loci are located at distinct positions on four of the five Arabidopsis chromosomes. Recombinants carrying mutations at different loci flower later than or as late as the later parental mutant. This distinction led to the assignment of eight of the loci to three epistatic groups. In wild type, vernalization promotes flowering to a small extent. For mutants at the loci fca, fve, fy and fpa, vernalization has a large effect both under LD and short day (SD) conditions, whereas co, gi, fd and fwa mutants are almost completely insensitive to this treatment. SD induces later flowering except for mutants at the co and gi loci, which flower with the same number of leaves under LD and SD conditions. This differential response of the mutants to environmental factors and their subdivision into epistatic groups is discussed in relation to a causal model for floral initiation in Arabidopsis thaliana.

1,011 citations


Journal ArticleDOI
TL;DR: It is found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-1 determines resistance, and genetically mapping the postulated resistance locus is begun.
Abstract: To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.

694 citations


Journal ArticleDOI
01 Nov 1991-Cell
TL;DR: DNA sequence analysis has shown that the protein encoded by GL1 contains a Myb DNA-binding motif, and southern analysis and subsequence analysis of isolated lambda clones has established that GL1 is a member of an extensive myb gene family in Arabidopsis.

616 citations


Journal ArticleDOI
01 Oct 1991-Nature
TL;DR: A systematic search for mutations in the flowering plant Arabidopsis thaliana that disrupt the spatial organization of the seedling by altering embryogenesis is described, suggesting principles of pattern formation in the plant embryo.
Abstract: A systematic search for mutations in the flowering plant Arabidopsis thaliana that disrupt the spatial organization of the seedling by altering embryogenesis is described. Mutations in nine genes affect three different aspects of the body organization: apical–basal pattern along the single axis of polarity, radial pattern involving the primary tissues, and shape. The results suggest principles of pattern formation in the plant embryo. (This article was corrected on 21 October 2015.)

550 citations


Journal ArticleDOI
TL;DR: It is concluded that in seedlings and adult plants, the wild-type cop1 gene product normally acts in darkness to repress the expression of genes involved in the dark-adaptive developmental and that regulatory photoreceptors act to reverse this action upon exposure to light.
Abstract: Light signals from the environment are perceived by specific regulatory photoreceptors in plants and are transduced by unknown mechanisms to genes that control growth and development. We have identified a genetic locus in Arabidopsis thaliana, which appears to play a central role in this transduction process. Mutations in this locus, designated copl (constitutively photomorphogenic), result in dark-grown seedlings with the morphology of wild-type seedlings grown in the light. In addition, these mutations lead to constitutive expression of an array of normally light-regulated genes in dark-grown seedlings and in light-grown adult plants placed in darkness. Promoter-reporter constructs of some of these genes are constitutively expressed in dark-grown transgenic copl seedlings, indicating that the aberrant behavior of these genes results primarily from aberrant modulation of their promoter activities in the mutant. In contrast, light control of seed germination and diurnal control of cab gene expression is normal in the copl mutants. Because these mutations are recessive, we conclude that in seedlings and adult plants, the wild-type copl gene product normally acts in darkness to repress the expression of genes involved in the photomorphogenic developmental pathway and to promote the expression of genes involved in the dark-adaptive developmental pathway, and that regulatory photoreceptors act to reverse this action upon exposure to light. However, photocontrol of seed germination and diurnal rhythms is apparently exerted via one or more separate pathways not involving the copl product.

540 citations


Journal ArticleDOI
TL;DR: The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes.
Abstract: The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth.

491 citations


Journal ArticleDOI
TL;DR: Results from double mutant analysis, showing that lfy-1 is epistatic to the floral organ homeotic gene ap2-6, are consistent with the hypothesis that a functional LFY gene is necessary for the expression of downstream genes controlling floral organ identity.
Abstract: Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele of a nuclear gene LEAFY (LFY), that has an inflorescence composed only of type 2-like metamers. These data suggest that the LFY gene is required for the development of type 3 metamers and that the transition from type 2 to type 3 metamers is a developmental step distinct from that between vegetative and reproductive growth (type 1 to type 2 metamers). Results from double mutant analysis, showing that lfy-1 is epistatic to the floral organ homeotic gene ap2-6, are consistent with the hypothesis that a functional LFY gene is necessary for the expression of downstream genes controlling floral organ identity.

446 citations


Journal ArticleDOI
TL;DR: Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polyploid cells.
Abstract: Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polyploid cells. Endoreduplication was found in all tissues except those of the inflorescences and was developmentally regulated according to the age of the tissues and their position within the plant.

436 citations


Journal ArticleDOI
TL;DR: The results suggest that the mutant is deficient in activity of a protein required to load phosphate into the xylem, suggesting that the phosphate deficiency is caused by a single nuclear recessive mutation at a locus designated pho1.
Abstract: A mutant of Arabidopsis thaliana deficient in the accumulation of inorganic phosphate has been isolated by screening directly for plants with altered quantities of total leaf phosphate. The mutant plants accumulate approximately 5% as much inorganic phosphate, and 24 to 44% as much total phosphate, as wild-type plants in aerial portions of the plant. Growth of the mutant is reduced, relative to wild type, and it exhibits other symptoms normally associated with phosphate deficiency. The phosphate deficiency is caused by a single nuclear recessive mutation at a locus designated pho1. The rate of phosphate uptake into the roots was similar between mutant and wild-type plants over a wide range of external phosphate concentrations. In contrast, when plants were grown in media containing 200 micromolar phosphate or less, phosphate transfer to the shoots of the mutant was reduced to 3 to 10% of the wild-type levels. The defect in phosphate transfer to the shoots could be overcome by providing higher levels of phosphate. Transfer of sulfate to the shoots was essentially normal in the mutant, indicating that the pho1 lesion was not a general defect in anion transport. Movement of phosphate through the xylem of the shoots was not impaired. The results suggest that the mutant is deficient in activity of a protein required to load phosphate into the xylem.

415 citations


Journal ArticleDOI
TL;DR: The use of Arabidopsis as a host for plant-parasitic nematodes will provide a new model system for the molecular genetic analysis of this interaction as well as establish culture conditions for successful infection and development of several economically important cyst-forming and root-knot nematode onArabidopsis thaliana under monoxenic conditions.
Abstract: Summary We have established culture conditions for successful infection and development of several economically important cyst-forming and root-knot nematodes on Arabidopsis thaliana under monoxenic conditions. Complete life cycles were obtained with the sedentary cyst nematodes Heterodera schachtii, H. trifolii, H. cajani and the root-knot nematodes Meloidogyne incognita and M. arenariaas well as with the migratory nematode Pratylenchus penetrans. In contrast, H. goettingiana and Globodera rostochiensis were unable to develop on Arabidopsis roots. Tissue-culture quality agar and medium conditions optimized for hydroponic root culture were essential for successful infections. Detailed in-vivo observations were made inside Arabidopsis roots during the early infection stages of M. incognita and during complete development of H. schachtii. Seventy-four different ecotypes of Arabidopsis were screened for their susceptibility towards H. schachtii resulting in a range of infection rates. None of the ecotypes tested showed complete resistance in vitro. The use of Arabidopsis as a host for plant-parasitic nematodes will provide a new model system for the molecular genetic analysis of this interaction.

Journal ArticleDOI
TL;DR: The results suggest that the Arabidopsis PAL and BG genes may be activated by distinct signal transduction pathways and show that differences in plant gene induction by virulent and avirulent strains can be attributed to a cloned presumptive avr gene.
Abstract: We developed a model system to study the signal transduction pathways leading to the activation of Arabidopsis thaliana genes involved in the defense against pathogen attack. Here we describe the identification and characterization of virulent and avirulent Pseudomonas syringae strains that elicit disease or resistance symptoms when infiltrated into Arabidopsis leaves. The virulent and avirulent strains were characterized by determining growth of the pathogen in Arabidopsis leaves and by measuring accumulation of mRNA corresponding to Arabidopsis phenylalanine ammonia-lyase (PAL), beta-1,3-glucanase (BG), and chalcone synthase (CHS) genes in infected leaves. The virulent strain, P. syringae pv maculicola ES4326, multiplied 10(5)-fold in Arabidopsis leaves and strongly elicited BG1, BG2, and BG3 mRNA accumulation but had only a modest effect on PAL mRNA accumulation. In contrast, the avirulent strain, P. syringae pv tomato MM1065, multiplied less than 10-fold in leaves and had only a minimal effect on BG1, BG2, and BG3 mRNA accumulation, but it induced PAL mRNA accumulation. No accumulation of CHS mRNA was found with either ES4326 or MM1065. We also describe the cloning of a putative avirulence (avr) gene from the avirulent strain MM1065 that caused the virulent strain ES4326 to grow less well in leaves and to strongly elicit PAL but not BG1 and BG3 mRNA accumulation. These results suggest that the Arabidopsis PAL and BG genes may be activated by distinct signal transduction pathways and show that differences in plant gene induction by virulent and avirulent strains can be attributed to a cloned presumptive avr gene.

Journal ArticleDOI
TL;DR: Evidence is provided that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the "indirect pathway") and the carotenoid mutant the authors describe undergoes normal greening.
Abstract: The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). We have used 18O2 to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of [18O]ABA and its catabolites, phaseic acid and ABA-glucose ester (beta-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the ring, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids from mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the "indirect pathway"). Furthermore the carotenoid mutant we describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plant.

Journal ArticleDOI
TL;DR: Using an Escherichia coli overexpression system, monoclonal antibodies that selectively recognize phytochromes A, B, and C from Arabidopsis are developed and identified and establish that phyTochromes B and C are "type 2" or photostable phy tochromes.
Abstract: The six long hypocotyl (hy) complementation groups of Arabidopsis (hy1, hy2, hy3, hy4, hy5, and hy6) share the common feature of an elongated hypocotyl when grown in white light. The varied responses of these mutants to irradiations of differing wavelengths have suggested that some of the lines may lack elements of the phytochrome signal transduction pathway. We have performed immunoblot and RNA gel blot analyses of the multiple types of phytochrome present in wild-type and mutant Arabidopsis and provide evidence that mutations at the HY3 locus cause a specific deficiency in phytochrome B. Using an Escherichia coli overexpression system, we have developed and identified monoclonal antibodies that selectively recognize phytochromes A, B, and C from Arabidopsis. In wild-type plants, phytochrome A is highly abundant in etiolated tissue, but rapidly decreases about 200-fold upon illumination. Phytochromes B and C are present at much lower levels in etiolated tissue but are unaffected by up to 24 hr of red light illumination, and together predominate in green seedlings. These data establish that phytochromes B and C are "type 2" or photostable phytochromes. Levels of phytochromes A, B, and C similar to those of the wild type are observed in strains containing mutations at the HY4 and HY5 loci. In contrast, all four hy3 mutant alleles tested here exhibit a modest (twofold to threefold) reduction in phyB transcript and a severe (20- to 50-fold) deficiency in phyB-encoded protein, relative to levels in wild-type plants. The levels of phyA- and phyC-encoded mRNA and protein, however, are indistinguishable from the wild type in these mutants. We conclude that the phenotype conferred by hy3 is due to the reduced levels of the light-stable phytochrome B.

01 Jan 1991
TL;DR: It is suggested that the expression of the CHS-A gene is regulated by sugars, as is theexpression of other sugar-responsive genes, such as the genes for sporamin, when grown under normal conditions in soil.
Abstract: Transgenic Arabidopsis thaliana plants wereconstructed by introduction ofafusion ofthegenefor#-glucuronidase (GUS)to theCHS-Agene,whichisoneofthetwogenesforchalcone synthase thatareactively expressed inthefloral organsof petunia. Theexpression ofthefusion geneCHS-A::GUS waslow intransgenic Arabidopsis plantlets, butitwasenhanced when plantlets ordetached leaves weretransferred toamediumthat contained 0.3molar sucrose, glucose, orfructose. Noenhance- mentwasobserved whenplantlets weretransferred toamedium that contained 0.3molar mannitol. Measurements ofcellular lev- elsofsugarsrevealed a tight linkage betweenthelevel of expression oftheCHS-A::GUS geneandthelevel ofaccumulation ofexogenously supplied sugars, inparticular sucrose. Thepar- allelism between theorgan-specific accumulation ofsugarand theorgan-specific expression oftheCHS-A::GUS genewasalso observed inpetunia andA.thaliana plants grownundernormal conditions insoil. Theconsensus sequences forsugar responses, suchasboxes11andIlIl inmembersofthefamily ofsporamin genesfromthesweetpotato, werefoundinthepromoter region oftheCHS-Agenethat wasusedforfusion totheGUSgene.Itis suggested that theexpression oftheCHS-Ageneisregulated by sugars, asistheexpression ofother sugar-responsive genes, suchasthegenesforsporamin. Aputative commonmechanism forthecontrol ofexpression of"sugar-related" genes, including theCHS-Agene, isdiscussed.

Journal ArticleDOI
TL;DR: The data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms, and that ABA levels can affect freezing tolerance.
Abstract: We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg 'erecta') and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms.

Journal ArticleDOI
TL;DR: In this paper, the expression of the CHS-A::GUS gene was found to be correlated with the accumulation of exogenously supplied sugars, in particular sucrose.
Abstract: Transgenic Arabidopsis thaliana plants were constructed by introduction of a fusion of the gene for β-glucuronidase (GUS) to the CHS-A gene, which is one of the two genes for chalcone synthase that are actively expressed in the floral organs of petunia. The expression of the fusion gene CHS-A::GUS was low in transgenic Arabidopsis plantlets, but it was enhanced when plantlets or detached leaves were transferred to a medium that contained 0.3 molar sucrose, glucose, or fructose. No enhancement was observed when plantlets were transferred to a medium that contained 0.3 molar mannitol. Measurements of cellular levels of sugars revealed a tight linkage between the level of expression of the CHS-A::GUS gene and the level of accumulation of exogenously supplied sugars, in particular sucrose. The parallelism between the organ-specific accumulation of sugar and the organ-specific expression of the CHS-A::GUS gene was also observed in petunia and A. thaliana plants grown under normal conditions in soil. The consensus sequences for sugar responses, such as boxes II and III in members of the family of sporamin genes from the sweet potato, were found in the promoter region of the CHS-A gene that was used for fusion to the GUS gene. It is suggested that the expression of the CHS-A gene is regulated by sugars, as is the expression of other sugar-responsive genes, such as the genes for sporamin. A putative common mechanism for the control of expression of “sugar-related” genes, including the CHS-A gene, is discussed.

Journal ArticleDOI
TL;DR: It is found that cdc2 mRNA is present in all plant organs and when expressed in a CDC28ts Saccharomyces strain, it partially restores the capacity to grow at 36 degrees C, indicating that the plant cDNA is a functional homolog of the p34cdc2 kinase.
Abstract: The p34cdc2 protein kinase is a key component of the eukaryotic cell cycle, which is required for G1 to S-phase transition and for entry into mitosis. Using a 380-base pair DNA fragment obtained by polymerase chain reaction amplification from an Arabidopsis thaliana flower cDNA library as a probe, we isolated and sequenced a cdc2-homologous cDNA from Arabidopsis. The encoded polypeptide has extensive homology with cdc2-like kinases. Furthermore, when expressed in a CDC28ts Saccharomyces strain, it partially restores the capacity to grow at 36 degrees C, indicating that the plant cDNA is a functional homolog of the p34cdc2 kinase. Genomic hybridization demonstrated that there is one copy of the cdc2 gene per Arabidopsis haploid genome. Using RNA gel blot analysis, we found that cdc2 mRNA is present in all plant organs.

Journal ArticleDOI
TL;DR: Mutants of Arabidopsis thaliana (L.) Heynh with altered regulation of starch degradation were identified by screening for plants that retained high levels of leaf starch after a period of extended darkness, raising the possibility that hitherto unidentified factors play a key role in regulating or catalyzing starch degradation.
Abstract: Mutants of Arabidopsis thaliana (L.) Heynh. with altered regulation of starch degradation were identified by screening for plants that retained high levels of leaf starch after a period of extended darkness. The mutant phenotype was also expressed in seeds, flowers, and roots, indicating that the same pathway of starch degradation is used in these tissues. In many respects, the physiological consequences of the mutations were equivalent to the effects observed in previously characterized mutants of Arabidopsis that are unable to synthesize starch. One mutant line, which was characterized in detail, had normal levels of activity of the starch degradative enzymes α-amylase, β-amylase, phosphorylase, D-enzyme, and debranching enzyme. Thus, it was not possible to establish a biochemical basis for the phenotype, which was due to a recessive mutation at a locus designated sex1 at position 12.2 on chromosome 1. This raises the possibility that hitherto unidentified factors, altered by the mutation, play a key role in regulating or catalyzing starch degradation.

Journal ArticleDOI
TL;DR: Data suggest that a post-transcriptional mechanism influences cab1 mRNA levels in Arabidopsis, and the identification of circadian-regulated cis-acting elements in the cab1 and cab2 upstream regions will provide powerful tools for both molecular and genetic analysis of the higher plant circadian clock.
Abstract: An intriguing property of many organisms is their ability to exhibit rhythmic cellular events that continue independently of environmental stimuli. These rhythmic processes are generated by an endogenous mechanism known as the biological clock. We wished to determine whether Arabidopsis thaliana will serve as a model plant system for a molecular genetic dissection of the circadian clock. To this end, we investigated the expression of Arabidopsis chlorophyll a/b-binding protein (cab) genes throughout the circadian cycle. Steady-state mRNA levels of the cab2 and cab3 genes showed a dramatic circadian cycling in plants shifted from light/dark cycles to constant darkness, whereas the cab1 mRNA level exhibited little or no cycling under the same conditions. Analysis of cab promoter fusions in transgenic tobacco revealed that both the cab1 and cab2 5[prime] upstream regions confer circadian-regulated expression on a chloramphenicol acetyltransferase (cat) reporter gene. In vitro nuclear run-on transcription assays also indicated that the transcription of the cab1 and cab2 genes is circadian regulated in Arabidopsis. Taken together, these data suggest that a post-transcriptional mechanism influences cab1 mRNA levels in Arabidopsis. The identification of circadian-regulated cis-acting elements in the cab1 and cab2 upstream regions will provide powerful tools for both molecular and genetic analysis of the higher plant circadian clock.

Journal ArticleDOI
TL;DR: High levels of expression of full-length rice and Arabidopsis phytochrome B under the control of the cauliflower mosaic virus 35S promoter in transgenicArabidopsis is demonstrated, providing direct evidence that phy tochrome B is a biologically functional photoreceptor.
Abstract: The photoreceptor phytochrome is encoded by a small multigene family in higher plants. phyA encodes the well-characterized etiolated-tissue phytochrome. The product of the phyB gene, which has properties resembling those of "green tissue" phytochrome, is as yet poorly characterized. We have developed a phytochrome B overexpression system for analysis of the structure and function of this protein. Using newly generated polyclonal and monoclonal antibodies that are selective for phytochrome B, we have demonstrated high levels of expression of full-length rice and Arabidopsis phytochrome B under the control of the cauliflower mosaic virus 35S promoter in transgenic Arabidopsis. The overexpressed phytochrome is spectrally active, undergoes red/far-red-light-dependent conformational changes, is synthesized in its inactive red light-absorbing form, and is stable in the light. Overexpression of phytochrome B is tightly correlated with a short hypocotyl phenotype in transgenic seedlings. This phenotype is strictly light dependent, thus providing direct evidence that phytochrome B is a biologically functional photoreceptor. Based on similarities to phenotypes obtained by overexpression of phytochrome A, it appears that phytochromes A and B can control similar responses in the plant.

Journal ArticleDOI
TL;DR: The readily scorable short-hypocotyl phenotype of Arabidopsis seedlings overexpressing phytochrome A provides a simple visual assay for rapidly monitoring the biological activity of mutagenized phy tochrome A polypeptides.
Abstract: To develop a model plant system for efficient functional analysis of mutagenized phytochrome polypeptides, we have overexpressed oat phytochrome A in Arabidopsis thaliana. R1 seedlings from selfed primary transformants segregated for hypocotyl length, when grown in the light, with a ratio of 3 short to 1 of normal length. When homozygous lines were established from these two size classes, accumulation of immunologically detectable oat phytochrome cosegregated with the short-hypocotyl trait. The short-hypocotyl seedlings contained substantially more spectrally active phytochrome than their normal-sized siblings, indicating that the introduced oat protein was photoreversible. The short-hypocotyl phenotype was strictly light-dependent, since no morphological effects of phytochrome overexpression could be seen in etiolated seedlings. Overexpression of only the chromophore-bearing, N-terminal domain of phytochrome A did not induce short hypocotyls in light-grown seedlings, indicating that additional sequence is essential for photoreceptor function. Similarly, overexpression of a full-length sequence mutated at the chromophore attachment site had no effect on phenotype, indicating the absence of any detectable dominant negative effect of the chromophoreless polypeptide on the activity of endogenous Arabidopsis phytochrome. Thus, the readily scorable short-hypocotyl phenotype of Arabidopsis seedlings overexpressing phytochrome A provides a simple visual assay for rapidly monitoring the biological activity of mutagenized phytochrome A polypeptides.

Journal ArticleDOI
TL;DR: It is concluded that Arabidopsis has at least two functional nitrate reductase genes and that the NIA2 gene product accounts for the majority of the leaf nitrate reducectase activity and chlorate sensitivity ofArabidopsis plants.
Abstract: Chlorate, the chlorine analog of nitrate, is a herbicide that has been used to select mutants impaired in the process of nitrate assimilation. In Arabidopsis thaliana, mutations at any one of eight distinct loci confer resistance to chlorate. The molecular identities of the genes at these loci are not known; however, one of these loci--chl3--maps very near the nitrate reductase structural gene NIA2. Through the isolation, characterization, and genetic analysis of new chlorate-resistant mutants generated by gamma irradiation, we have been able to demonstrate that the CHL3 gene and the NIA2 gene are identical. Three new chlorate-resistant mutants were identified that had deletions of the entire NIA2 gene. These nia2 null mutants were viable and still retained 10% of wild-type nitrate reductase activity in the leaves of the plants. All three deletion mutations were found to be new alleles of chl3. Introduction of the NIA2 gene back into these chl3 mutants by Agrobacterium-mediated transformation partially complemented their mutant phenotype. From these data, we conclude that Arabidopsis has at least two functional nitrate reductase genes and that the NIA2 gene product accounts for the majority of the leaf nitrate reductase activity and chlorate sensitivity of Arabidopsis plants.

Journal ArticleDOI
TL;DR: Transcriptional promoters from Arabidopsis clones were fused to the beta-glucuronidase (GUS) reporter gene and introduced into plants, and GUS expression was used to analyze temporal and spatial regulation of the promoters.
Abstract: The above-ground portion of a plant develops from the shoot apical meristem. An abundant source of apical meristems was obtained from cauliflower heads. Meristematic cDNAs were identified by differential screening and used to isolate corresponding Arabidopsis thaliana genes. Transcriptional promoters from Arabidopsis clones were fused to the beta-glucuronidase (GUS) reporter gene and introduced into plants, and GUS expression was used to analyze temporal and spatial regulation of the promoters. One promoter (meri-5) directed GUS expression in the meristematic dome and not the surrounding leaf primordia. The meri-5 promoter also directed GUS expression at branching points in the shoot and root. A second meristematic gene was found to be a histone (H3) gene. The H3 promoter was isolated and fused to GUS. Expression of the H3-GUS fusion in transgenic tobacco showed preferential expression in the peripheral zone and a lack of noticeable staining in the central zone.

Journal ArticleDOI
TL;DR: Evidence is presented that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and it is proposed that the occurrence of a substrate shuttle inArabidopsis chloroplasts for termination of the glycoleytic cycle is proposed.
Abstract: Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle.

Journal ArticleDOI
TL;DR: Analysis of a series of 5[prime] deletions of the acidic chitinase promoter in Arabidopsis indicated that the proximal 192 bp from the transcription initiation site was sufficient to establish both the constitutive and induced pattern of expression.
Abstract: Expression of the Arabidopsis acidic chitinase promoter was investigated during plant development and in response to inoculation with fungal pathogens. A chimeric gene composed of 1129 bp of 5[prime] upstream sequence from the acidic chitinase gene was fused to the [beta]-glucuronidase (GUS) coding region and used to transform Arabidopsis and tomato. Promoter activity was monitored by histochemical and quantitative assays of GUS activity. In healthy transgenic plants, the acidic chitinase promoter activity was restricted to roots, leaf vascular tissue, hydathodes, guard cells, and anthers, whereas GUS expression was induced in mesophyll cells surrounding lesions caused by Rhizoctonia solani infection of transgenic Arabidopsis. In transgenic tomato plants, GUS expression was induced around necrotic lesions caused by Alternaria solani and Phytophthora infestans. Expression of the acidic chitinase promoter-GUS transgene was weakly induced by infiltrating leaves with salicylic acid. Analysis of a series of 5[prime] deletions of the acidic chitinase promoter in Arabidopsis indicated that the proximal 192 bp from the transcription initiation site was sufficient to establish both the constitutive and induced pattern of expression. Elements further upstream were involved in quantitative expression of the gene. The location of a negative regulatory element was indicated between -384 and -590 and positive regulatory elements between -1129 and -590.


Journal ArticleDOI
TL;DR: This paper isolated cDNAs from two distinct genes encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) in Arabidopsis thaliana.
Abstract: We have isolated cDNAs from two distinct genes encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) in Arabidopsis thaliana. Predicted protein sequences from both genes, DHS1 and DHS2, and a potato DAHP synthase gene are highly related, but none shows significant sequence similarity to conserved microbial DAHP synthase proteins. Despite this structural difference, the DHS1 cDNA complements mutations in a yeast strain lacking DAHP synthase activity. DHS1 RNA levels increase in Arabidopsis leaves subjected either to physical wounding or to infiltration with pathogenic Pseudomonas syringae strains. DHS2 RNA levels are not increased by these treatments, suggesting that the DHS1 and DHS2 proteins fulfill different physiological functions. Other enzymes in the Arabidopsis aromatic pathway are also encoded by duplicated genes, an arrangement that may allow independent regulation of aromatic amino acid biosynthesis by distinct physiological requirements such as protein synthesis and secondary metabolism. The presence of amino-terminal extensions characteristic of chloroplast transit peptides on DHS1 and DHS2 suggests that both proteins may be targeted to the chloroplast.

Journal ArticleDOI
TL;DR: A yeast artificial chromosome (YAC) genomic library of Arabidopsis thaliana was constructed in a derivative of the vector pYAC4 which was modified to facilitate the production of end-specific probes for chromosome walking, and it is expected that the complete library of more than 20000 YACs is expected to contain most or all of theArabidopsis genome with a high probability.
Abstract: A yeast artificial chromosome (YAC) genomic library of Arabidopsis thaliana was constructed in a derivative of the vector pYAC4 which was modified to facilitate the production of end-specific probes for chromosome walking. Experiments in which a subset of 2300 clones from the library were probed with 30 restriction fragment length polymorphism (RFLP) markers indicated that, on the average, the entire genome is represented once in each 800 YAC clones. Thus, the complete library of more than 20000 YACs is expected to contain most or all of the Arabidopsis genome with a high probability. The YAC clones examined in the sample had an average insert size of approximately 150 kb±10 and represented more than 5% of the Arabidopsis genome. Based on the properties of the library and the currently available RFLP maps for Arabidopsis, only one or two steps from flanking RFLPs should be sufficient to isolate an average gene in Arabidopsis by chromosome walking with the YACs. In order to facilitate chromosome walking, a method for the production of hybridization probes from the ends of the inserts was employed that is based on a combination of pre-amplification of the vector/insert junction sequences via the polymerase chain reaction and specific transcription from T3 or T7 RNA polymerase promoters flanking the cloning site in the YAC vector.

Journal ArticleDOI
TL;DR: It is shown that the USP promoter becomes active in transgenic tobacco seeds in both the embryo and the endosperm, whereas its activity in Arabidopsis is detectable only in the embryo.
Abstract: We have isolated a novel gene, denoted USP, from Vicia faba var. minor, which corresponds to the most abundant mRNA present in cotyledons during early seed development; however, the corresponding protein does not accumulate in cotyledons. The characterized USP gene with its two introns is 1 of about 15 members of a gene family. A fragment comprising 637 bp of 5′ flanking sequence and the total 5′ untranslated region was shown to be sufficient to drive the mainly seed-specific expression of two reporter genes, coding for neomycin phosphotransferase 11 and β-glucuronidase, in transgenic Arabidopsis thaliana and Nicotiana tabacum plants. We showed that the USP promoter becomes active in transgenic tobacco seeds in both the embryo and the endosperm, whereas its activity in Arabidopsis is detectable only in the embryo. Moreover, we demonstrated a transient activity pattern of the USP promoter in root tips of both transgenic host species.