scispace - formally typeset
Search or ask a question
Topic

Arc welding

About: Arc welding is a research topic. Over the lifetime, 25393 publications have been published within this topic receiving 168182 citations.


Papers
More filters
Patent
05 Jun 1969
TL;DR: In this paper, a high current capacity arc welding gun for gas-shielded, continuous feed, consumable electrode arc welding processes is presented, which includes: a unique handle cooled by convection air flow; an improved head assembly having a unique electrical insulating ion impervious shield for preventing destructive arcing to the gas nozzle, an improved shielding gas flow path through the head assembly which additionally cooperates with the ion-resistant shield to prevent gas nozzle arcing, a unique current contact tip which attaches to head assembly by a novel curved wedge clamping concept and which is produced
Abstract: A high current capacity arc welding gun for gas-shielded, continuous feed, consumable electrode arc welding processes. Features include: a unique handle cooled by convection air flow; an improved head assembly having a unique electrical insulating ion impervious shield for preventing destructive arcing to the gas nozzle, an improved shielding gas flow path through the head assembly which additionally cooperates with the ion impervious shield to prevent gas nozzle arcing, a unique current contact tip which attaches to the head assembly by a novel curved wedge clamping concept and which is produced by an improved, versatile, and inexpensive method of manufacture that increases the copper density and refines the grain structure in the current contact tip for greater life; an improved gooseneck lining for longer life and reduced friction; a heat protected control switch assembly of rugged construction and unique trigger operation; and an improved welding cable connection assembly.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the key factors related to the formation of defects in welding methods commonly used with aluminium alloys, such as friction-stir welding, laser beam welding and arc welding.
Abstract: Transportation industries are obliged to address concerns arising from greater emphasis on energy saving and ecologically sustainable products. Engineers, therefore, have a responsibility to deliver innovative solutions that will support environmental preservation and yet meet industries’ requirements for greater productivity and minimised operational costs. Aluminium alloys have successfully contributed to meeting the rising demand for lightweight structures. Notable developments in aluminium welding techniques have resolved many welding related problems, although some issues remain to be addressed. The present study attempts to give an overview of the key factors related to the formation of defects in welding methods commonly used with aluminium alloys. First, a concise overview of defects found in friction-stir welding, laser beam welding and arc welding of aluminium alloys is presented. The review is used as a basis for analysis of the relationship between friction-stir welding process parameters and weld defects. Next, the formation and prevention of the main weld defects in laser beam welding, such as porosity and hot cracking, are discussed. Finally, metallurgical aspects influencing weld metal microstructure and contributing to defects are tabulated, as are defect prevention methods, for the most common flaws in arc welding of aluminium alloys.

129 citations

Journal ArticleDOI
Yan Ma1, Dominic Cuiuri1, Nicholas P Hoye1, Huijun Li1, Zengxi Pan1 
TL;DR: In this article, the additive layer manufacturing (ALM) process is used to produce full density titanium aluminide components directly using the new additive layer additive manufacturing method, and the microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail.
Abstract: An innovative and low cost additive layer manufacturing (ALM) process is used to produce γ-TiAl based alloy wall components. Gas tungsten arc welding (GTAW) provides the heat source for this new approach, combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool. This paper investigates the morphology, microstructure and mechanical properties of the additively manufactured TiAl material, and how these are affected by the location within the manufactured component. The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands. The fabricated γ-TiAl based alloy consists of comparatively large α 2 grains in the near-substrate region, fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands, followed by fine dendrites and interdendritic γ phases in the top region. Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material. The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments, where the alloying process is not as well controlled as in the higher regions. The tensile properties are also different for the vertical (build) direction and horizontal (travel) direction because of the differing microstructure in each direction. The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail. The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method.

129 citations

Journal ArticleDOI
TL;DR: The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.
Abstract: Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of grain structure and topology in three dimensions in both the FZ and the HAZ considering the motion of the liquid pool was investigated. And the results showed that the grain size distributions and topological class distributions were largely unaffected by the temporal and spatial variations of the temperature created by different welding parameters.

126 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
92% related
Alloy
171.8K papers, 1.7M citations
78% related
Microstructure
148.6K papers, 2.2M citations
76% related
Machining
121.3K papers, 1M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202396
2022186
2021303
2020685
2019807
2018922