scispace - formally typeset
Search or ask a question
Topic

Arc welding

About: Arc welding is a research topic. Over the lifetime, 25393 publications have been published within this topic receiving 168182 citations.


Papers
More filters
Patent
Frank J Pilia1
28 Feb 1947

36 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of the pulsed-current gas metal arc welding (GMAW) process for vertical-up weld deposition of steel has been found to be superior over the use of the short-circuiting arc GMAW process with respect to the tensile, impact, and fatigue properties of the weld joint.
Abstract: The performance of the pulsed-current gas metal arc welding (GMAW) process for vertical-up weld deposition of steel has been found to be superior over the use of the short-circuiting arc GMAW process with respect to the tensile, impact, and fatigue properties of the weld joint. The microstructure, weld geometry, and mechanical properties of a pulsed-current weld joint are largely governed by the pulse parameters, and correlate well to the factor φ, defined as a summarized influence of pulse parameters such as peak current, base current, pulse-off time, and pulse frequency. The increase of φ has been found favorable to refine the microstructure and enhance the tensile strength, Cv toughness, and fatigue life of a weld joint. The fatigue life of a short-circuiting arc weld joint has been found to be markedly reduced due to the presence of an undercut at the weld toe and incomplete side-wall fusion of the base material.

36 citations

Journal ArticleDOI
Xin Wang1, DaQian Sun1, Y. Sun1
TL;DR: In this article, the results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2mm, where the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal.
Abstract: The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

36 citations

Journal ArticleDOI
TL;DR: In this article, a range of MIAB welding applications were investigated on different hollow and solid parts, with special attention being given to welding of parts, the cross section of which is commensurable with the active spot diameter of the rotating arc.
Abstract: Magnetically Impelled Arc Butt (MIAB) welding is mainly used in the automotive industry for butt welding of tubes and tubular parts 8–100mm in diameter and 0.8–6mm wall thickness. To extend the range of MIAB welding applications research work was conducted on different hollow and solid parts, special attention being given to welding of parts, the cross section of which is commensurable with of the active spot diameter of the rotating arc.

36 citations

Proceedings ArticleDOI
03 Mar 2003
TL;DR: In this article, a hybrid welding of TIG, MIG arc and YAG laser was developed for high-efficiency low-strain welding, taking the most advantages of both the laser and arc welding.
Abstract: Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

36 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
92% related
Alloy
171.8K papers, 1.7M citations
78% related
Microstructure
148.6K papers, 2.2M citations
76% related
Machining
121.3K papers, 1M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202396
2022186
2021303
2020685
2019807
2018922