scispace - formally typeset
Search or ask a question
Topic

Arc welding

About: Arc welding is a research topic. Over the lifetime, 25393 publications have been published within this topic receiving 168182 citations.


Papers
More filters
Book
03 Apr 1980
TL;DR: The effect of surface forces on the bonding of materials was studied in this article. But the authors focused on the behavior of welds in service and did not consider the effects of the weld thermal cycle.
Abstract: The effect of surface forces on the bonding of materials. Solid-phase welding and adhesive joining. Soldering and brazing. The joining of ceramics: microjoining. Fusion welding: processes. Fusion welding: mass and heat flow. Metallurgical effects of the weld thermal cycle. Carbon and ferritic alloy steels. Austenitic and high-alloy steels. Non-ferrous metals. The behaviour of welds in service.

386 citations

Journal ArticleDOI
TL;DR: In this article, a unified equation to compute the energy density is proposed to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.

369 citations

Journal Article
TL;DR: The solution of a traveling distributed heat source on a semi-infinite plate provides information about both the size and the shape of arc weld pools as mentioned in this paper, and the results indicate that both welding process variables (current, arc length and travel speed) and material parameters (thermal diffusivity) have significant effects on weld shape.
Abstract: The solution of a traveling distributed heat source on a semi-infinite plate provides information about both the size and the shape of arc weld pools. The results indicate that both welding process variables (current, arc length and travel speed) and material parameters (thermal diffusivity) have significant effects on weld shape. The theoretical predictions are compared with experimental results on carbon steels, stainless steel, titanium and aluminum with good agreement. 25 references, 23 figures, 1 table.

364 citations

Journal Article
TL;DR: In this paper, an assessment of the present knowledge in the following topics: (1) plasma torch and performance of blown arc (dc or ac), transferred arc and radio frequency torches; (2) established industrial applications with special emphasis on cutting, welding, spraying, transferred arc reclamation, reheating and purification, heating metal melts, smelting reduction, chemical operations, and waste destruction; (3) recent developments in the knowledge of fundamental processes in plasma torches with power sources, cathodes (hot and cold), anodes (static and dynamic behavior), and torch
Abstract: Although many thermal plasma processes have been developed for industrial applications, the wide acceptance as a manufacturing technology is prevented due to economical and competitive reasons, and/or reproducibility and reliability aspects. This paper is devoted to an assessment of the present knowledge in the following topics: (1) plasma torch and performance of blown arc (dc or ac), transferred arc and radio frequency torches; (2) established industrial applications with special emphasis on cutting, welding, spraying, transferred arc reclamation, reheating and purification, reheating metal melts, smelting reduction, chemical operations, and waste destruction; (3) recent developments in the knowledge of fundamental processes in plasma torches with power sources, cathodes (hot and cold), anodes (static and dynamic behavior), and torch components; (4) modeling-thermodynamic and transport properties, plasma flow with and without the Maxwell's equations; (5) measurement techniques including emission and absorption spectroscopy, laser scattering, enthalpy probes, video cameras, spectral analysis, shadowgraphy, and particle diagnostics either in flight with statistical measurements and those giving characteristics of a single particle upon flattening on a substrate; and (6) plasma-processing development in the presently used industrial processes and also in prospective processes with surface hardening, ultrafine powder production, plasma-assisted CVD, and plasma-fluidized or spouted bed reactors.

364 citations

Journal ArticleDOI
TL;DR: In this article, the weld toe region is modelled as a sharp, zero radius, V-shaped notch and the intensity of asymptotic stress distributions obeying Williams' solution are quantified by means of the Notch Stress Intensity Factors (NSIFs).
Abstract: Weld bead geometry cannot, by its nature, be precisely defined. Parameters such as bead shape and toe radius vary from joint to joint even in well-controlled manufacturing operations. In the present paper the weld toe region is modelled as a sharp, zero radius, V-shaped notch and the intensity of asymptotic stress distributions obeying Williams’ solution are quantified by means of the Notch Stress Intensity Factors (NSIFs). When the constancy of the angle included between weld flanks and main plates is assured and the angle is large enough to make mode II contribution non-singular, mode I NSIF can be directly used to summarise the fatigue strength of welded joints having very different geometry. By using a large amount of experimental data taken from the literature and related to a V-notch angle of 135°, two NSIF-based bands are reported for steel and aluminium welded joints under a nominal load ratio about equal to zero. A third band is reported for steel welded joints with failures originated from the weld roots, where the lack of penetration zone is treated as a crack-like notch and units for NSIFs are the same as conventional SIF used in LEFM. Afterwards, in order to overcome the problem related to the variability of the V-notch opening angle, the synthesis is made by simply using a scalar quantity, i.e. the mean value of the strain energy averaged in the structural volume surrounding the notch tips. This energy is given in closed form on the basis of the relevant NSIFs for modes I and II and the radius RC of the averaging zone is carefully identified with reference to conventional arc welding processes. RC for welded joints made of steel and aluminium considered here is 0.28 mm and 0.12 mm, respectively. Different values of RC might characterise welded joints obtained from high-power processes, in particular from automated laser beam welding. The local-energy based criterion is applied to steel welded joints under prevailing mode I (with failures both at the weld root and toe) and to aluminium welded joints under mode I and mixed load modes (with mode II contribution prevailing on that ascribable to mode I). Surprising, the mean value of ΔW related to the two groups of welded materials was found practically coincident at 2 million cycles. More than 750 fatigue data have been considered in the analyses reported herein.

326 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
92% related
Alloy
171.8K papers, 1.7M citations
78% related
Microstructure
148.6K papers, 2.2M citations
76% related
Machining
121.3K papers, 1M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202396
2022186
2021303
2020685
2019807
2018922