scispace - formally typeset
Search or ask a question
Topic

Arc welding

About: Arc welding is a research topic. Over the lifetime, 25393 publications have been published within this topic receiving 168182 citations.


Papers
More filters
Proceedings ArticleDOI
12 Feb 2009
TL;DR: In this paper, the effects of laser powers and their densities on the weld penetration and the formation of sound welds were investigated in welding of Type 304 austenitic stainless steel, A5052 aluminum alloy or high strength steel plates with four laser beams of about 0.12 to 1 mm in focused spot diameter, and their welding phenomena were observed with high-speed video cameras and X-ray transmission real-time imaging system.
Abstract: Fiber lasers have been receiving considerable attention because of their advantages of high power, high beam quality and high efficiency, and are expected as one of the desirable heat sources for high-speed and deep-penetration welding. In our researches, therefore, the effects of laser powers and their densities on the weld penetration and the formation of sound welds were investigated in welding of Type 304 austenitic stainless steel, A5052 aluminum alloy or high strength steel plates with four laser beams of about 0.12 to 1 mm in focused spot diameter, and their welding phenomena were observed with high-speed video cameras and X-ray transmission real-time imaging system. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, but on the other hand at low welding speeds deeper-penetration welds could be produced at higher power. Laser-induced plume behavior and its effect on weld penetration, and the mechanisms of spattering, underfilling, porosity and humping were elucidated, sound welds without welding defects could be produced under the improved welding conditions. In addition, importance of the development of focusing optics and the removal of a plume during remote welding will be emphasized in terms of the stable production of constant deep-penetration welds and the reduction in welding defects in high power laser welding.

56 citations

Journal ArticleDOI
TL;DR: In this article, the effect of heat input on the mechanical properties of low-carbon steel was studied using two welding processes: Oxy-Acetylene Welding (OAW) and Shielded Metal Arc Welding(SMAW).
Abstract: In this work, the effect of heat input on the mechanical properties of low-carbon steel was studied using two welding processes: Oxy-Acetylene Welding (OAW) and Shielded Metal Arc Welding (SMAW). Two different edge preparations on a specific size, 10-mm thick low-carbon steel, with the following welding parameters: dual welding voltage of 100 V and 220 V, various welding currents at 100, 120, and 150 Amperes and different mild steel electrode gauges of 10 and 12 were investigated. The tensile strength, hardness and impact strength of the welded joint were carried out and it was discovered that the tensile strength and hardness reduce with the increase in heat input into the weld. However, the impact strength of the weldment increases with the increase in heat input. Besides it was also discovered that V-grooved edge preparation has better mechanical properties as compared with straight edge preparation under the same conditions. Microstructural examinations conducted revealed that the cooling rate in different media has significant effect on the microstructure of the weldment. Pearlite and ferrite were observed in the microstructure, but the proportion of ferrite to pearlite varied under different conditions.

56 citations

Journal ArticleDOI
TL;DR: A numerical model of spot pulsed current GTA welding for partially and fully penetrated weld pools is presented in this article, where heat transfer and fluid flow in the weld pool driven by the combination of electromagnetic force, buoyancy force, surface tension gradient and latent heat are included in the model.

55 citations

Journal ArticleDOI
TL;DR: In this article, the effect of welding processes such as shielded metal arc welding, gas metal arc and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied.
Abstract: The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigation, it is found that gas tungsten arc welded joints of ferritic stainless steel have superior tensile and impact properties compared with shielded metal arc and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone.

55 citations

Patent
24 Nov 1969
TL;DR: In this paper, an arc welding process for stainless steel and a flux-cored electrode particularly useful for welding was described, and means for limiting the moisture content of the electrode as applied to the workpiece were provided.
Abstract: There is disclosed an arc welding process for stainless steel and a flux-cored electrode particularly useful therein. In one embodiment, means are provided for limiting the moisture content of the electrode as applied to the workpiece. In another embodiment the electrode is formulated of components having relatively low moisture absorptivity.

55 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
92% related
Alloy
171.8K papers, 1.7M citations
78% related
Microstructure
148.6K papers, 2.2M citations
76% related
Machining
121.3K papers, 1M citations
76% related
Deformation (engineering)
41.5K papers, 899.7K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202396
2022186
2021303
2020685
2019807
2018922