scispace - formally typeset
Search or ask a question
Topic

Arecoline

About: Arecoline is a research topic. Over the lifetime, 744 publications have been published within this topic receiving 16015 citations. The topic is also known as: methylarecaiden & methylarecaidin.


Papers
More filters
Journal ArticleDOI
TL;DR: Results show that donepezil acutely increases the brain AA signal that is mediated by ACh acting at muscarinic receptors, but that this signal is rapidly desensitized despite continued elevated brain ACh concentration, and that the AA signal in response to arecoline was not altered followingdonepezil.
Abstract: Donepezil, an acetylcholinesterase (AChE) inhibitor used for treating Alzheimer's disease patients, is thought to act by increasing brain extracellular acetylcholine (ACh), and ACh binding to cholinergic receptors. Muscarinic receptors are coupled to cytosolic phospholipase A2 (cPLA2) activation and arachidonic acid (AA) release from synaptic membrane phospholipid. This activation can be imaged in rodents as an AA incorporation coefficient k*, using quantitative autoradiography. Acute and chronic effects of donepezil on the AA signal, k* for AA, were measured in 81 brain regions of unanesthetized rats. Twenty min after a single oral dose (3.0 mg/kg) of donepezil, k* was increased significantly in 37 brain regions, whereas k* did not differ from control 7 h afterwards or following chronic (21 days) of donepezil. Pretreatment with atropine prevented the 20-min increments in k* following donepezil. Donepezil also increased the brain ACh concentration and reduced brain AChE activity, but did not change cPLA2 activity, regardless of administration regimen. These results show that donepezil acutely increases the brain AA signal that is mediated by ACh acting at muscarinic receptors, but that this signal is rapidly desensitized despite continued elevated brain ACh concentration. In contrast, the AA signal in response to arecoline was not altered following donepezil.

12 citations

Journal ArticleDOI
TL;DR: There is no predictable correlation of drug stimulation of specific brain neuronal pathways and changes in the permeability of the BBB, as measured by calculating a unidirectional blood‐to‐brain transfer constant for the circulating tracer [14C]‐α‐aminoisobutyric acid.
Abstract: The aim of the present study was to investigate the existence of alterations of the blood-brain barrier (BBB) permeability in rats injected with centrally acting drugs, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [14C]-alpha-aminoisobutyric acid. The intraperitoneal (i.p.) injection of the dopaminergic antagonist haloperidol (1 mg kg-1) did not modify the regional BBB permeability. When the cholinomimetic agent arecoline hydrobromide (6.25 mg kg-1) was injected i.p. into methylatropine-pretreated rats, it induced a significant decrease of Ki values within the frontal cortex, parietal cortex, striatum and brain-stem. Our findings emphasize two concepts: (1) centrally acting drugs, such as arecoline, can induce changes in the BBB permeability, through several mechanisms; (2) there is no predictable correlation of drug stimulation of specific brain neuronal pathways and changes in the permeability of the BBB.

12 citations

Journal ArticleDOI
TL;DR: The muscarinic receptor-mediated and non-muscarinic vascular effects of cholinomimetic drugs used in glaucoma were quantified and Physostigmine failed to potentiate the vascular relaxation of exogenous acetylcholine, indicating the absence of acetyl choline esterase in the tissue.
Abstract: The muscarinic receptor-mediated and non-muscarinic vascular effects of cholinomimetic drugs used in glaucoma were quantified. On the isolated rat aorta, the vascular tone induced by phenylephrine is functionally antagonized by cholinomimetic drugs. Based on EC50, the relative order of potency for the endothelium-dependent vascular relaxation was acetylcholine (0.05 microM) 1 > (+/-)-methacholine (0.35 microM) 1/7 > carbachol (0.63 microM) 1/12 > (+/-)-aceclidine (1.26 microM) 1/25. The maximal effects of the four agonists varied between 82-87%. The muscarinic vascular relaxation of 0.03 microM to 100 microM pilocarpine was less than 15%. At high concentrations, pilocarpine had 1/20.000 the vascular activity of acetylcholine. Physostigmine failed to potentiate the vascular relaxation of exogenous acetylcholine, indicating the absence of acetylcholine esterase in the tissue. Arecoline, with an EC50 of 7.76 microM, was partly sensitive to the removal of the endothelium. Atropine treatment did not block the vascular effect of high concentrations of pilocarpine. Atropine, as expected, blocked the vascular effects of carbachol with K(B) = 3.2 nM. Pilocarpine produces vascular relaxation by its competition with spasmogens like phenylephrine, oxymetazoline, vasopressin or latanoprost. Arecoline also shares these properties with pilocarpine in the blood vessel. The molecular mechanism of the vascular effects as well as ocular clinical implications of cholinomimetic drugs is discussed.

12 citations

Journal ArticleDOI
TL;DR: DART-MS analyses of BCs can be used to accurately determine areca alkaloids as AN chewing biomarkers up to 3 days post chewing and possibly longer.
Abstract: Background Areca nut (AN) chewing is carcinogenic and biomarkers reflecting it are urgently needed to determine the effectiveness of emergent cessation programs. Buccal cells (BCs) may serve as an ideal matrix to measure such biomarkers; however, their utility for this purpose is unknown. Direct analysis in real time-mass spectrometry (DART-MS) is a sensitive technique that analyzes materials in the open air and requires minimal/no sample preparation. We utilized DART-MS to analyze BCs to test the usefulness of this method in measuring areca alkaloids as biomarkers for AN chewing. Methods We applied DART-MS in positive-ion mode to quantitate over time human BCs: (a) exposed ex vivo to betel quid extracts (BQE) consisting of young AN, Piper betle L. leaf, slaked lime, and tobacco; and (b) obtained from seven chewers before and after BQ chewing. Quantification was performed by normalizing DART-MS alkaloid signal intensities to cholesterol intensities. Results Signals for areca alkaloids arecoline and arecaidine-guvacoline were detected in BCs exposed ex vivo to BQE up to 7 days (the last day tested) after exposure and in BCs from chewers up to 3 days (the last day tested) post chewing. Discussion The presence of alkaloid signals in BQ-exposed BCs verified BCs as a valid matrix and DART-MS as a suitable technique to measure biomarkers for AN chewing and provided reliable information on AN chewing timing. Conclusion DART-MS analyses of BCs can be used to accurately determine areca alkaloids as AN chewing biomarkers up to 3 days post chewing and possibly longer.

12 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
70% related
Receptor
159.3K papers, 8.2M citations
69% related
Agonist
53.7K papers, 1.9M citations
68% related
In vivo
61.3K papers, 1.9M citations
66% related
Glutamate receptor
33.5K papers, 1.8M citations
65% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202243
202126
202038
201921
201818