scispace - formally typeset
Search or ask a question
Topic

Arecoline

About: Arecoline is a research topic. Over the lifetime, 744 publications have been published within this topic receiving 16015 citations. The topic is also known as: methylarecaiden & methylarecaidin.


Papers
More filters
Journal ArticleDOI
17 Dec 2020-PLOS ONE
TL;DR: Interestingly, in oral cells, PRDX2 promoted cell proliferation, cell-cycle progression, cell migration and inhibited apoptosis, which was induced by arecoline and HPV16 oncoproteins and promoted growth of OSCC cells.
Abstract: Peroxiredoxin 2 (PRDX2) is upregulated in various cancers including oral squamous cell carcinoma (OSCC). It is a known tumor promoter in some cancers, but its role in OSCC is unclear. This study aimed to investigate the effect of arecoline, an alkaloid of the betel nut, and human papillomavirus type 16 (HPV16) E6/E7 oncoproteins on induction of PRDX2 expression, and also the effects of PRDX2 overexpression in oral cell lines. Levels of PRDX2 protein were determined using western blot analysis of samples of exfoliated normal oral cells (n = 75) and oral lesion cells from OSCC cases (n = 75). Some OSCC cases were positive for HPV infection and some patients had a history of betel quid chewing. To explore the level of PRDX2 by western blot, the proteins were extracted from oral cell lines that were treated with arecoline or retroviruses containing HPV16 E6 gene and HPV16 E6/E7 expressing vector. For analysis of PRDX2 functions, cell proliferation, cell-cycle progression, apoptosis and migration was compared between oral cells overexpressing PRDX2 and cells with PRDX2-knockdown. PRDX2 expression levels tended to be higher in OSCC samples that were positive for HPV infection and had history of betel quid chewing. Arecoline treatment in vitro at low concentrations and overexpression of HPV16 E6 or E6/E7 in oral cells induced PRDX2 overexpression. Interestingly, in oral cells, PRDX2 promoted cell proliferation, cell-cycle progression (G2/M phase), cell migration and inhibited apoptosis. Upregulation of PRDX2 in oral cells was induced by arecoline and HPV16 oncoproteins and promoted growth of OSCC cells.

10 citations

Journal ArticleDOI
TL;DR: In this paper, different concentrations of coline (low dosage: 5 mg/kg/day and high dosage 50 mg/ kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte.
Abstract: Habitual chewing of areca nut increases the risk of cardiovascular disease mortality, but less report demonstrate the toxic mechanism of areca nut on heart. To investigate toxicity of areca nut on cardiomyocytes, we induced the heart injury with arecoline to evaluate the acute damage of areca nut on heart. Different concentrations of are coline (lowdosage: 5 mg/kg/day and high dosage 50 mg/kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte. Themyocardial architecture of the rat heart was observed. The arecoline-induced apoptotic proteins were analysed via western blotting. The myocardialarchitecture of heart was injured with arecoline and TUNEL stain was also shown are coline-induced cardiac apoptosis. Arecoline promoted the protein expression of both Fas dependent snd mitochondrial dependent apoptosis. In summary, arecoline induces cardiac toxicity and apoptosis by inducing both death receptor and mitochondria-dependent apoptotic pathways on heart.

10 citations

Journal ArticleDOI
TL;DR: It is found that arecoline inhibits HaCaT epithelial cell proliferation and survival, in a dose-dependent manner, and cell cycle arrest in the G1/S phase, while this is not obvious in the Hel fibroblast cells.
Abstract: Betel nut chewing is the most common cause of oral submucous fibrosis (OSF). Arecoline is the main component of the betel nut, and is associated with the occurrence and development of OSF through cytotoxicity, genotoxicity and DNA damage. Similar types of stimuli elicit differential responses in different cells. In the present study, we investigated the effects of arecoline on the HaCaT epithelial and Hel fibroblast cell lines. The data showed that arecoline affected HaCaT cell morphology. MTT assay revealed that arecoline suppressed HaCaT cell proliferation. Furthermore, we found that arecoline induced the cell cycle arrest of HaCaT cells. In comparison with the untreated control cells, following treatment with ≥75 µg/ml arecoline an increased percentage of HaCaT cells remained at the G0/G1 phase of the cell cycle, accompanied by a reduced percentage of cells in the S phase. However, arecoline treatment did not significantly alter Hel cell cycle distribution. In the HaCaT epithelial cells, arecoline downregulated expression of the G1/S phase regulatory proteins cyclin D1, CDK4, CDK2, E2F1 as determined by reverse transcription-PCR analysis and western blotting. In summary, arecoline inhibits HaCaT epithelial cell proliferation and survival, in a dose-dependent manner, and cell cycle arrest in the G1/S phase, while this is not obvious in the Hel fibroblast cells. Potentially, our findings may aid in the prevention of arecoline-associated human OSF.

10 citations

Journal ArticleDOI
TL;DR: It is revealed that chronic arecoline-exposure substantially induces upregulation of Fat mass and obesity-associated protein (FTO), MYC, and programmed cell death-ligand 1 (PD-L1) in OSCC cells, and it is demonstrated that are coline-induced FTO promotes the stability and expression levels of PD-L 1 transcripts through mediating m6A modification and MYC activity, respectively.
Abstract: The high prevalence of oral squamous cell carcinoma (OSCC) in South Asia is associated with habitual areca nut chewing. Arecoline, a primary active carcinogen within areca nut extract, is known to promote OSCC pathological development. Dysregulation of N6-methyladenosine (m6A) modification has begun to emerge as a significant contributor to cancer development and progression. However, the biological effects and molecular mechanisms of m6A modification in arecoline-promoted OSCC malignance remain elusive. We reveal that chronic arecoline-exposure substantially induces upregulation of Fat mass and obesity-associated protein (FTO), MYC, and programmed cell death-ligand 1 (PD-L1) in OSCC cells. Moreover, upregulation of PD-L1 is observed in OSCC cell lines and tissues and is associated with areca nut chewing in OSCC patients. We also demonstrate that arecoline-induced FTO promotes the stability and expression levels of PD-L1 transcripts through mediating m6A modification and MYC activity, respectively. PD-L1 upregulation confers superior cell proliferation, migration, and resistance to T-cell killing to OSCC cells. Blockage of PD-L1 by administration of anti-PD-L1 antibody shrinks tumor size and improves mouse survival by elevating T-cell-mediated tumor cell killing. Therefore, targeting PD-L1 might be a potential therapeutic strategy for treating PD-L1-positive OSCC patients, especially those with habitual areca nut chewing.

10 citations

Journal ArticleDOI
TL;DR: It is revealed that chronic arecoline exposure substantially induces upregulation of fat mass and obesity‐associated protein (FTO), MYC, and programmed cell death‐ligand 1 (PD‐L1) in OSCC cells, and it is demonstrated that are coline‐induced FTO promotes the stability and expression levels of PD‐L 1 transcripts through mediating m6A modification and MYC activity, respectively.
Abstract: The high prevalence of oral squamous cell carcinoma (OSCC) in South Asia is associated with habitual areca nut chewing. Arecoline, a primary active carcinogen within areca nut extract, is known to promote OSCC pathological development. Dysregulation of N6‐methyladenosine (m6A) modification has begun to emerge as a significant contributor to cancer development and progression. However, the biological effects and molecular mechanisms of m6A modification in arecoline‐promoted OSCC malignance remain elusive. We reveal that chronic arecoline exposure substantially induces upregulation of fat mass and obesity‐associated protein (FTO), MYC, and programmed cell death‐ligand 1 (PD‐L1) in OSCC cells. Moreover, upregulation of PD‐L1 is observed in OSCC cell lines and tissues and is associated with areca nut chewing in OSCC patients. We also demonstrate that arecoline‐induced FTO promotes the stability and expression levels of PD‐L1 transcripts through mediating m6A modification and MYC activity, respectively. PD‐L1 upregulation confers superior cell proliferation, migration, and resistance to T‐cell killing to OSCC cells. Blockage of PD‐L1 by administration of anti‐PD‐L1 antibody shrinks tumor size and improves mouse survival by elevating T‐cell‐mediated tumor cell killing. Therefore, targeting PD‐L1 might be a potential therapeutic strategy for treating PD‐L1‐positive OSCC patients, especially those with habitual areca nut chewing.

10 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
70% related
Receptor
159.3K papers, 8.2M citations
69% related
Agonist
53.7K papers, 1.9M citations
68% related
In vivo
61.3K papers, 1.9M citations
66% related
Glutamate receptor
33.5K papers, 1.8M citations
65% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202243
202126
202038
201921
201818