scispace - formally typeset
Search or ask a question
Topic

Arousal

About: Arousal is a research topic. Over the lifetime, 4757 publications have been published within this topic receiving 255054 citations. The topic is also known as: Physiological arousal.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that these drugs reduce anxiety by impairing the functioning of a widespread neural system including the septo-hippocampal system (SHS), the Papez circuit, the prefrontal cortex, and ascending monoaminergic and cholinergic pathways which innervate these forebrain structures.
Abstract: A model of the neuropsychology of anxiety is proposed. The model is based in the first instance upon an analysis of the behavioural effects of the antianxiety drugs (benzodiazepines, barbiturates, and alcohol) in animals. From such psychopharmacologi-cal experiments the concept of a “behavioural inhibition system” (BIS) has been developed. This system responds to novel stimuli or to those associated with punishment or nonreward by inhibiting ongoing behaviour and increasing arousal and attention to the environment. It is activity in the BIS that constitutes anxiety and that is reduced by antianxiety drugs. The effects of the antianxiety drugs in the brain also suggest hypotheses concerning the neural substrate of anxiety. Although the benzodiazepines and barbiturates facilitate the effects of γ-aminobutyrate, this is insufficient to explain their highly specific behavioural effects. Because of similarities between the behavioural effects of certain lesions and those of the antianxiety drugs, it is proposed that these drugs reduce anxiety by impairing the functioning of a widespread neural system including the septo-hippocampal system (SHS), the Papez circuit, the prefrontal cortex, and ascending monoaminergic and cholinergic pathways which innervate these forebrain structures. Analysis of the functions of this system (based on anatomical, physiological, and behavioural data) suggests that it acts as a comparator: it compares predicted to actual sensory events and activates the outputs of the BIS when there is a mismatch or when the predicted event is aversive. Suggestions are made as to the functions of particular pathways within this overall brain system. The resulting theory is applied to the symptoms and treatment of anxiety in man, its relations to depression, and the personality of individuals who are susceptible to anxiety or depression.

4,725 citations

Book
22 Dec 2014

4,258 citations

Journal ArticleDOI
TL;DR: Responsibility specificity, particularly facial expressiveness, supported the view that specific affects have unique patterns of reactivity, and consistency of the dimensional relationships between evaluative judgments and physiological response emphasizes that emotion is fundamentally organized by these motivational parameters.
Abstract: Colored photographic pictures that varied widely across the affective dimensions of valence (pleasant-unpleasant) and arousal (excited-calm) were each viewed for a 6-s period while facial electromyographic (zygomatic and corrugator muscle activity) and visceral (heart rate and skin conductance) reactions were measured. Judgments relating to pleasure, arousal, interest, and emotional state were measured, as was choice viewing time. Significant covariation was obtained between (a) facial expression and affective valence judgments and (b) skin conductance magnitude and arousal ratings. Interest ratings and viewing time were also associated with arousal. Although differences due to the subject's gender and cognitive style were obtained, affective responses were largely independent of the personality factors investigated. Response specificity, particularly facial expressiveness, supported the view that specific affects have unique patterns of reactivity. The consistency of the dimensional relationships between evaluative judgments (i.e., pleasure and arousal) and physiological response, however, emphasizes that emotion is fundamentally organized by these motivational parameters.

3,089 citations

Journal ArticleDOI
TL;DR: This finding links music with biologically relevant, survival-related stimuli via their common recruitment of brain circuitry involved in pleasure and reward.
Abstract: We used positron emission tomography to study neural mechanisms underlying intensely pleasant emotional responses to music. Cerebral blood flow changes were measured in response to subject-selected music that elicited the highly pleasurable experience of “shivers-down-the-spine” or “chills.” Subjective reports of chills were accompanied by changes in heart rate, electromyogram, and respiration. As intensity of these chills increased, cerebral blood flow increases and decreases were observed in brain regions thought to be involved in reward/motivation, emotion, and arousal, including ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex. These brain structures are known to be active in response to other euphoria-inducing stimuli, such as food, sex, and drugs of abuse. This finding links music with biologically relevant, survival-related stimuli via their common recruitment of brain circuitry involved in pleasure and reward.

2,254 citations


Network Information
Related Topics (5)
Cognition
99.9K papers, 4.3M citations
90% related
Working memory
26.5K papers, 1.6M citations
88% related
Prefrontal cortex
24K papers, 1.9M citations
87% related
Social relation
29.1K papers, 1.7M citations
85% related
Anxiety
141.1K papers, 4.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023737
20221,442
2021210
2020195
2019189