scispace - formally typeset
Search or ask a question
Topic

Arsenic

About: Arsenic is a research topic. Over the lifetime, 24209 publications have been published within this topic receiving 633999 citations. The topic is also known as: As & element 33.


Papers
More filters
Journal ArticleDOI
TL;DR: The over-extraction of groundwater is the major cause of groundwater salinization and arsenic pollution in the coastal area of Yun-Lin, Taiwan and this model explains over 77.8% of the total groundwater quality variation.

1,429 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the adsorption behavior of arsenite and arsenate on ferrihydrite, under carefully controlled conditions, with regard to adaption kinetics and the influence of pH.
Abstract: Because of its toxicity, arsenic is of considerable environmental concern. Its solubility in natural systems is strongly influenced by adsorption at iron oxide surfaces. The objective of this study was to compare the adsorption behavior of arsenite and arsenate on ferrihydrite, under carefully controlled conditions, with regard to adsorption kinetics, adsorption isotherms, and the influence of pH on adsorption. The adsorption reactions were relatively fast, with the reactions almost completed within the first few hours. At relatively high As concentrations, arsenite reacted faster than arsenate with the ferrihydrite, i.e., equilibrium was achieved sooner, but arsenate adsorption was faster at low As concentrations and low pH. Adsorp tion maxima of approximately 0.60 (0.58) and 0.25 (0.16) molAs molFe-1 were achieved for arsenite and arsenate, respectively, at pH 4.6 (pH 9.2 in parentheses). The high arsenite retention, which precludes its retention entirely as surface adsorbed species, indicates the likel...

1,428 citations

Journal ArticleDOI
09 May 2003-Science
TL;DR: This work reviews what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature and investigates their role in aquifers.
Abstract: Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.

1,362 citations

Journal ArticleDOI
TL;DR: It is reported that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem, which explains why rice is efficient in arsenic accumulation.
Abstract: Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.

1,181 citations

Journal ArticleDOI
22 Nov 2002-Science
TL;DR: The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.
Abstract: High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.

1,179 citations


Network Information
Related Topics (5)
Copper
122.3K papers, 1.8M citations
85% related
Adsorption
226.4K papers, 5.9M citations
80% related
Aqueous solution
189.5K papers, 3.4M citations
80% related
Environmental exposure
37.4K papers, 1.8M citations
79% related
Mass spectrometry
72.2K papers, 2M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20231,328
20222,841
2021863
2020886
20191,069