scispace - formally typeset
Search or ask a question
Topic

Artery

About: Artery is a research topic. Over the lifetime, 19824 publications have been published within this topic receiving 533986 citations. The topic is also known as: arteria & a..


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that human coronary arteries enlarge in relation to plaque area and that functionally important lumen stenosis may be delayed until the lesion occupies 40 percent of the internal elastic lamina area.
Abstract: Whether human coronary arteries undergo compensatory enlargement in the presence of coronary disease has not been clarified. We studied histologic sections of the left main coronary artery in 136 hearts obtained at autopsy to determine whether atherosclerotic human coronary arteries enlarge in relation to plaque (lesion) area and to assess whether such enlargement preserves the cross-sectional area of the lumen. The area circumscribed by the internal elastic lamina (internal elastic lamina area) was taken as a measure of the area of the arterial lumen if no plaque had been present. The internal elastic lamina area correlated directly with the area of the lesion (r = 0.44, P less than 0.001), suggesting that coronary arteries enlarge as lesion area increases. Regression analysis yielded the following equation: Internal elastic lamina area = 9.26 + 0.88 (lesion area) + 0.026 (age) + 0.005 (heart weight). The correlation coefficient for the lesion area was significant (P less than 0.001), whereas the correlation coefficients for age and heart weight were not. The lumen area did not decrease in relation to the percentage of stenosis (lesion area/internal elastic lamina area X 100) for values between zero and 40 percent but did diminish markedly and in close relation to the percentage of stenosis for values above 40 percent (r = -0.73, P less than 0.001). We conclude that human coronary arteries enlarge in relation to plaque area and that functionally important lumen stenosis may be delayed until the lesion occupies 40 percent of the internal elastic lamina area. The preservation of a nearly normal lumen cross-sectional area despite the presence of a large plaque should be taken into account in evaluating atherosclerotic disease with use of coronary angiography.

3,631 citations

Journal ArticleDOI
TL;DR: The preliminary findings suggest that the abnormal vascular response to acetylcholine may represent a defect in endothelial vasodilator function, and may be important in the pathogenesis of coronary vasospasm.
Abstract: Acetylcholine is believed to dilate normal blood vessels by promoting the release of a vasorelaxant substance from the endothelium (endothelium-derived relaxing factor). By contrast, if the endothelium is removed experimentally, acetylcholine constricts blood vessels. We tested the hypothesis that muscarinic cholinergic vasodilation is impaired in coronary atherosclerosis. Graded concentrations of acetylcholine and, for comparison, the nonendothelial-dependent vasodilator nitroglycerin were infused into the left anterior descending artery of eight patients with advanced coronary stenoses (greater than 50 percent narrowing), four subjects with angiographically normal coronary arteries, and six patients with mild coronary atherosclerosis (less than 20 percent narrowing). Vascular responses were evaluated by quantitative angiography. In several segments each of four normal coronary arteries, acetylcholine caused a dose-dependent dilation from a control diameter of 1.94 +/- 0.16 mm to 2.16 +/- 0.15 mm with the maximal acetylcholine dose (P less than 0.01). In contrast, all eight of the arteries with advanced stenoses showed dose-dependent constriction, from 1.05 +/- 0.05 to 0.32 +/- 0.16 mm at the highest concentration of acetylcholine (P less than 0.01), with temporary occlusion in five. Five of six vessels with minimal disease also constricted in response to acetylcholine. All vessels dilated in response to nitroglycerin, however. We conclude that paradoxical vasoconstriction induced by acetylcholine occurs early as well as late in the course of coronary atherosclerosis. Our preliminary findings suggest that the abnormal vascular response to acetylcholine may represent a defect in endothelial vasodilator function, and may be important in the pathogenesis of coronary vasospasm.

2,457 citations

Journal ArticleDOI
TL;DR: This study demonstrated a close relation between coronary artery endothelium-dependent vasomotor responses to acetylcholine and flow-mediated vasodilation in the brachial artery, which may become a useful surrogate in assessing the predisposition to atherosclerosis in patients with cardiac risk factors.

2,038 citations

Journal ArticleDOI
16 Apr 1999-Science
TL;DR: A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue, with patency documented up to 24 days by digital angiography.
Abstract: A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.

1,801 citations

Journal ArticleDOI
TL;DR: The apoE-deficient mouse contains the entire spectrum of lesions observed during atherogenesis and is the first mouse model to develop lesions similar to those in humans.
Abstract: Initial description of apolipoprotein (apo) E-deficient transgenic mice demonstrated the development of severe hypercholesterolemia due to probable delayed clearance of large atherogenic particles from the circulation. Examination of these mice demonstrated foam cell accumulation in the aortic root and pulmonary arteries by 10 weeks of age. In the present study, the animals were fed either chow or a high-fat, Western-type diet and examined at ages ranging from 6 to 40 weeks. Gross examination by dissection microscopy revealed a predilection for development of lesions in the aortic root, at the lesser curvature of the aortic arch, the principal branches of the aorta, and in the pulmonary and carotid arteries. Monocyte attachment to endothelial cells was observed by light and electron microscopic examination at 6 weeks, the earliest time point examined. Foam cell lesions developed as early as 8 weeks, and after 15 weeks advanced lesions (fibrous plaques) were observed. The latter consisted of a fibrous cap containing smooth muscle cells surrounded by connective tissue matrix that covered a necrotic core with numerous foamy macrophages. Mice fed the Western-type diet generally had more advanced lesions than those fed a chow diet. The apoE-deficient mouse contains the entire spectrum of lesions observed during atherogenesis and is the first mouse model to develop lesions similar to those in humans. This model should provide numerous opportunities to study the pathogenesis and therapy of atherosclerosis in a small, genetically defined animal.

1,703 citations


Network Information
Related Topics (5)
Myocardial infarction
119K papers, 4.2M citations
92% related
Coronary artery disease
77.6K papers, 2.2M citations
92% related
Heart disease
42.8K papers, 1.6M citations
91% related
Ejection fraction
47.6K papers, 1.6M citations
91% related
Heart failure
107.8K papers, 3.5M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023958
20222,152
2021490
2020500
2019428
2018428