scispace - formally typeset
Search or ask a question
Topic

Articulated body pose estimation

About: Articulated body pose estimation is a research topic. Over the lifetime, 1172 publications have been published within this topic receiving 52039 citations.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Abstract: We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem. Our large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc. Finally we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.

3,579 citations

Journal ArticleDOI
TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Abstract: We propose a new method to quickly and accurately predict human pose---the 3D positions of body joints---from a single depth image, without depending on information from preceding frames. Our approach is strongly rooted in current object recognition strategies. By designing an intermediate representation in terms of body parts, the difficult pose estimation problem is transformed into a simpler per-pixel classification problem, for which efficient machine learning techniques exist. By using computer graphics to synthesize a very large dataset of training image pairs, one can train a classifier that estimates body part labels from test images invariant to pose, body shape, clothing, and other irrelevances. Finally, we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.The system runs in under 5ms on the Xbox 360. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state-of-the-art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.

3,034 citations

Journal ArticleDOI
TL;DR: This paper discusses the inherent difficulties in head pose estimation and presents an organized survey describing the evolution of the field, comparing systems by focusing on their ability to estimate coarse and fine head pose and highlighting approaches well suited for unconstrained environments.
Abstract: The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.

1,402 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: A general, flexible mixture model for capturing contextual co-occurrence relations between parts, augmenting standard spring models that encode spatial relations, and it is shown that such relations can capture notions of local rigidity.
Abstract: We describe a method for human pose estimation in static images based on a novel representation of part models. Notably, we do not use articulated limb parts, but rather capture orientation with a mixture of templates for each part. We describe a general, flexible mixture model for capturing contextual co-occurrence relations between parts, augmenting standard spring models that encode spatial relations. We show that such relations can capture notions of local rigidity. When co-occurrence and spatial relations are tree-structured, our model can be efficiently optimized with dynamic programming. We present experimental results on standard benchmarks for pose estimation that indicate our approach is the state-of-the-art system for pose estimation, outperforming past work by 50% while being orders of magnitude faster.

1,194 citations

Book ChapterDOI
05 Nov 2012
TL;DR: A framework for automatic modeling, detection, and tracking of 3D objects with a Kinect and shows how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time.
Abstract: We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detection rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods.

1,114 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
86% related
Object detection
46.1K papers, 1.3M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Feature extraction
111.8K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202262
20213
20201
20187
201761