scispace - formally typeset
Search or ask a question
Topic

Artificial noise

About: Artificial noise is a research topic. Over the lifetime, 1545 publications have been published within this topic receiving 28923 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers the problem of secret communication between two nodes, over a fading wireless medium, in the presence of a passive eavesdropper, and assumes that the transmitter and its helpers (amplifying relays) have more antennas than the eavesdroppers.
Abstract: The broadcast nature of the wireless medium makes the communication over this medium vulnerable to eavesdropping. This paper considers the problem of secret communication between two nodes, over a fading wireless medium, in the presence of a passive eavesdropper. The assumption used is that the transmitter and its helpers (amplifying relays) have more antennas than the eavesdropper. The transmitter ensures secrecy of communication by utilizing some of the available power to produce 'artificial noise', such that only the eavesdropper's channel is degraded. Two scenarios are considered, one where the transmitter has multiple transmit antennas, and the other where amplifying relays simulate the effect of multiple antennas. The channel state information (CSI) is assumed to be publicly known, and hence, the secrecy of communication is independent of the secrecy of CSI.

1,846 citations

Journal ArticleDOI
TL;DR: The role of multiple antennas for secure communication is investigated within the framework of Wyner's wiretap channel, and a masked beamforming scheme that radiates power isotropically in all directions attains near-optimal performance in the high SNR regime.
Abstract: The capacity of the Gaussian wiretap channel model is analyzed when there are multiple antennas at the sender, intended receiver and eavesdropper. The associated channel matrices are fixed and known to all the terminals. A computable characterization of the secrecy capacity is established as the saddle point solution to a minimax problem. The converse is based on a Sato-type argument used in other broadcast settings, and the coding theorem is based on Gaussian wiretap codebooks. At high signal-to-noise ratio (SNR), the secrecy capacity is shown to be attained by simultaneously diagonalizing the channel matrices via the generalized singular value decomposition, and independently coding across the resulting parallel channels. The associated capacity is expressed in terms of the corresponding generalized singular values. It is shown that a semi-blind "masked" multi-input multi-output (MIMO) transmission strategy that sends information along directions in which there is gain to the intended receiver, and synthetic noise along directions in which there is not, can be arbitrarily far from capacity in this regime. Necessary and sufficient conditions for the secrecy capacity to be zero are provided, which simplify in the limit of many antennas when the entries of the channel matrices are independent and identically distributed. The resulting scaling laws establish that to prevent secure communication, the eavesdropper needs three times as many antennas as the sender and intended receiver have jointly, and that the optimum division of antennas between sender and intended receiver is in the ratio of 2:1.

1,529 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Abstract: In this paper, intelligent reflecting surfaces (IRSs) are employed to enhance the physical layer security in a challenging radio environment. In particular, a multi-antenna access point (AP) has to serve multiple single-antenna legitimate users, which do not have line-of-sight communication links, in the presence of multiple multi-antenna potential eavesdroppers whose channel state information (CSI) is not perfectly known. Artificial noise (AN) is transmitted from the AP to deliberately impair the eavesdropping channels for security provisioning. We investigate the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the IRSs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers. To this end, we formulate a robust non-convex optimization problem taking into account the impact of the imperfect CSI of the eavesdropping channels. To address the non-convexity of the optimization problem, an efficient algorithm is developed by capitalizing on alternating optimization, a penalty-based approach, successive convex approximation, and semidefinite relaxation. Simulation results show that IRSs can significantly improve the system secrecy performance compared to conventional architectures without IRS. Furthermore, our results unveil that, for physical layer security, uniformly distributing the reflecting elements among multiple IRSs is preferable over deploying them at a single IRS.

552 citations

Journal ArticleDOI
TL;DR: An encoding scheme in which transmitters dedicate some of their power to create artificial noise is proposed and shown to outperform both time-sharing and simple multiplexed transmission of the confidential messages.
Abstract: We study information-theoretic security for discrete memoryless interference and broadcast channels with independent confidential messages sent to two receivers. Confidential messages are transmitted to their respective receivers while ensuring mutual information-theoretic secrecy. That is, each receiver is kept in total ignorance with respect to the message intended for the other receiver. The secrecy level is measured by the equivocation rate at the eavesdropping receiver. In this paper, we present inner and outer bounds on secrecy capacity regions for these two communication systems. The derived outer bounds have an identical mutual information expression that applies to both channel models. The difference is in the input distributions over which the expression is optimized. The inner bound rate regions are achieved by random binning techniques. For the broadcast channel, a double-binning coding scheme allows for both joint encoding and preserving of confidentiality. Furthermore, we show that, for a special case of the interference channel, referred to as the switch channel, derived bounds meet. Finally, we describe several transmission schemes for Gaussian interference channels and derive their achievable rate regions while ensuring mutual information-theoretic secrecy. An encoding scheme in which transmitters dedicate some of their power to create artificial noise is proposed and shown to outperform both time-sharing and simple multiplexed transmission of the confidential messages.

549 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical closed-form expression of an achievable secrecy rate was derived for the case of noncolluding eavesdroppers and an upper bound on the secrecy rate is provided.
Abstract: We consider the problem of secure communication with multiantenna transmission in fading channels. The transmitter simultaneously transmits an information-bearing signal to the intended receiver and artificial noise to the eavesdroppers. We obtain an analytical closed-form expression of an achievable secrecy rate and use it as the objective function to optimize the transmit power allocation between the information signal and the artificial noise. Our analytical and numerical results show that equal power allocation is a simple yet near-optimal strategy for the case of noncolluding eavesdroppers. When the number of colluding eavesdroppers increases, more power should be used to generate the artificial noise. We also provide an upper bound on the SNR, above which, the achievable secrecy rate is positive and shows that the bound is tight at low SNR. Furthermore, we consider the impact of imperfect channel state information (CSI) at both the transmitter and the receiver and find that it is wise to create more artificial noise to confuse the eavesdroppers than to increase the signal strength for the intended receiver if the CSI is not accurately obtained.

515 citations


Network Information
Related Topics (5)
Fading
55.4K papers, 1M citations
89% related
Wireless network
122.5K papers, 2.1M citations
87% related
Network packet
159.7K papers, 2.2M citations
86% related
Wireless
133.4K papers, 1.9M citations
86% related
Wireless ad hoc network
49K papers, 1.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202399
2022208
2021149
2020191
2019210
2018190