scispace - formally typeset
Search or ask a question
Topic

Artificial photosynthesis

About: Artificial photosynthesis is a research topic. Over the lifetime, 1567 publications have been published within this topic receiving 96042 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the photodriven conversion of liquid water to gaseous hydrogen and oxygen, a process similar to that of biological photosynthesis, using sunlight to drive a thermodynamically uphill reaction of an abundant material to produce fuel.
Abstract: The maintenance of life on earth, our food, oxygen, and fossil fuels depend upon the conversion of solar energy into chemical energy by biological photosynthesis carried out by green plants and photosynthetic bacteria. In this process sunlight and available abundant raw materials (water, carbon dioxide) are converted to oxygen and the reduced organic species that serve as food and fuel. A long-standing challenge has been the development of a practical artificial photosynthetic system that can roughly mimic the biological one, not by duplicating the self-organization and reproduction of the biological system nor the aesthetic beauty of trees and plants, but rather by being able to use sunlight to drive a thermodynamically uphill reaction of an abundant materials to produce a fuel. In this Account we focus on “water splitting”, the photodriven conversion of liquid water to gaseous hydrogen and oxygen:

2,377 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: The current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction with special emphasis of Fe(2)O(3) with an outlook on the challenges in solar fuel generation with nanoscales inorganic materials is reviewed.
Abstract: The increasing human need for clean and renewable energy has stimulated research in artificial photosynthesis, and in particular water photoelectrolysis as a pathway to hydrogen fuel. Nanostructured devices are widely regarded as an opportunity to improve efficiency and lower costs, but as a detailed analysis shows, they also have considerably disadvantages. This article reviews the current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction. The focus is on transition metal oxides with special emphasis of Fe2O3, but nitrides and chalcogenides, and main group element compounds, including carbon nitride and silicon, are also covered. The effects of nanostructuring on carrier generation and collection, multiple exciton generation, and quantum confinement are also discussed, as well as implications of particle size on surface recombination, on the size of space charge layers and on the possibility of controlling nanostructure energetics via potential determining ions. After a summary of electrocatalytic and plasmonic nanostructures, the review concludes with an outlook on the challenges in solar fuel generation with nanoscale inorganic materials.

1,779 citations


Network Information
Related Topics (5)
Photocatalysis
67K papers, 2.1M citations
82% related
Catalysis
400.9K papers, 8.7M citations
82% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Graphene
144.5K papers, 4.9M citations
80% related
Carbon nanotube
109K papers, 3.6M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022208
2021162
2020168
2019133
2018155