scispace - formally typeset
Search or ask a question

Showing papers on "Ascorbic acid published in 2016"


Journal ArticleDOI
TL;DR: Current views regarding the role of redox-active/inactive metal-induced formation of ROS, modifications to biomolecules in human disease such as cancer, cardiovascular disease, metabolic disease, Alzheimer's disease, Parkinson’s disease, renal disease, blood disorders and other disease are summarized.
Abstract: Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha-tocopherol, glutathione (GSH), carotenoids, flavonoids and antioxidant enzymes which include SOD, catalase and glutathione peroxidase. This review summarizes current views regarding the role of redox-active/inactive metal-induced formation of ROS, and modifications to biomolecules in human disease such as cancer, cardiovascular disease, metabolic disease, Alzheimer's disease, Parkinson's disease, renal disease, blood disorders and other disease. The involvement of metals in DNA repair mechanisms, tumor suppressor functions and interference with signal transduction pathways are also discussed.

688 citations


Journal ArticleDOI
TL;DR: The optimized and highly efficient ZnO/CeO2 (90:10) nanocomposite exhibited enhanced photocatalytic degradation performance for the degradation of methyl orange, methylene blue, and phenol as well as industrial textile effluent compared to ZNO, CeO2 and the other investigated nanocomPOSites.
Abstract: In this study, pure ZnO, CeO2 and ZnO/CeO2 nanocomposites were synthesized using a thermal decomposition method and subsequently characterized using different standard techniques. High-resolution X-ray photoelectron spectroscopy measurements confirmed the oxidation states and presence of Zn(2+), Ce(4+), Ce(3+) and different bonded oxygen species in the nanocomposites. The prepared pure ZnO and CeO2 as well as the ZnO/CeO2 nanocomposites with various proportions of ZnO and CeO2 were tested for photocatalytic degradation of methyl orange, methylene blue and phenol under visible-light irradiation. The optimized and highly efficient ZnO/CeO2 (90:10) nanocomposite exhibited enhanced photocatalytic degradation performance for the degradation of methyl orange, methylene blue, and phenol as well as industrial textile effluent compared to ZnO, CeO2 and the other investigated nanocomposites. Moreover, the recycling results demonstrate that the ZnO/CeO2 (90:10) nanocomposite exhibited good stability and long-term durability. Furthermore, the prepared ZnO/CeO2 nanocomposites were used for the electrochemical detection of uric acid and ascorbic acid. The ZnO/CeO2 (90:10) nanocomposite also demonstrated the best detection, sensitivity and performance among the investigated materials in this application. These findings suggest that the synthesized ZnO/CeO2 (90:10) nanocomposite could be effectively used in various applications.

502 citations


Journal ArticleDOI
TL;DR: Vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited are reviewed; questions about the vitamin that remain to be answered are raised; and lines of investigations that are likely to be fruitful are explored.
Abstract: Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful.

404 citations


Journal ArticleDOI
TL;DR: The development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid is described and envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.
Abstract: Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.

385 citations


Journal ArticleDOI
TL;DR: Polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and should be considered as safe and effective approaches in cancer prevention and therapy.
Abstract: Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. The presence of vitamin C, amino acids and other micronutrients could enhance inhibitory effect of epigallocatechin gallate (EGCG) on secretion of MMPs. In addition, enrichment of NM with quercetin (EPQ mix) enhanced anticancer activity of NM in vivo. In conclusion, polyphenols, especially in combination with other polyphenols or micronutrients, have been shown to be effective against multiple targets in cancer development and progression, and should be considered as safe and effective approaches in cancer prevention and therapy.

336 citations


Journal ArticleDOI
TL;DR: In this article, a facile, environmentally friendly route is demonstrated for the synthesis of Pt-Au dendrimer-like nanoparticles on the surface of polydopamine (PDA)-wrapped reduced graphene oxide (RGO), in which Pt alloy nanoparticles are synthesized by the reduction of H2PtCl6 and HAuCl4 with ascorbic acid.
Abstract: A facile, environmentally friendly route is demonstrated for the synthesis of Pt–Au dendrimer-like nanoparticles on the surface of polydopamine (PDA)-wrapped reduced graphene oxide (RGO), in which Pt–Au alloy nanoparticles are synthesized by the reduction of H2PtCl6 and HAuCl4 with ascorbic acid. The effects of support material and chemical composition on the catalytic activity for the reduction of 4-nitrophenol (4-NP) are investigated in detail. Pt nanoparticles supported on PDA/RGO (Pt-PDA/RGO) exhibit significantly higher catalytic activity as compared to those exhibited by Pt nanoparticles deposited on pristine graphene sheets (Pt-RGO) and commercial Pt/C catalyst. Furthermore, the chemical composition seriously affects the catalytic ability of the catalysts. With Pt-to-Au molar ratios of 3/1 and 1/1, significantly enhanced catalytic activities are observed, outperforming the support decorated with each single constituent. The high activity of Pt-Au-PDA/RGO can be explained by electronic effect involving in two types of electron transfers: (1) from the PDA coating to both Au and Pt atoms; (2) from Au to Pt atoms. Moreover, the Pt3Au1-PDA/RGO composite keeps a stable conversion efficiency of around 100% over six successive reduction reaction cycles. Through an experimental device of “filtering and catalyzing,” the Pt3Au1- PDA/RGO sample exhibits superior efficiency for the purification of water containing 4-NP. Within 8 s, the water becomes colorless.

327 citations


Journal ArticleDOI
TL;DR: In this paper, the use of Helicteres isora root extract for the synthesis of silver nanoparticles (AgNPs) was reported, which showed good antioxidant activity as compared to butylated hydroxytoluene (BHT) and ascorbic acid as standard antioxidant.
Abstract: Nanomedicine utilizes biocompatible nanomaterials for diagnostic and therapeutic purposes. The present study reports the use of Helicteres isora root extract for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs were initially noticed through visual color change from yellow to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 450 nm using UV–visible spectroscopy. Morphology and size of AgNPs were determined by transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) study revealed crystalline nature of AgNPs. The prolonged stability of AgNPs was due to capping of oxidized polyphenols and carboxyl protein which was established by Fourier transform infrared spectroscopy (FTIR) study. In addition, the synthesized AgNPs were tested for antioxidant and antibacterial activities. It showed good antioxidant activity as compared to butylated hydroxytoluene (BHT) and ascorbic acid as standard antioxidant. It could be concluded that H. isora root extract can be used efficiently in the production of potential antioxidant and antibacterial AgNPs for commercial application.

322 citations


Journal ArticleDOI
TL;DR: The results indicate that salt induced oxidative stress in bean is mainly counteracted by enzymatic defence systems, and that the metabolism of phenolic compounds is induced under very extreme conditions.

322 citations


Journal ArticleDOI
TL;DR: In this paper, the composition and nutritional value of different lettuce types were summarized, which can help growers and consumers choose lettuce types with higher nutritional benefits, such as fiber, iron, folate, and vitamin C.

303 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the materials that have been extensively used to fabricate modified electrode surfaces for detection of dopamine in real samples and discussed the characteristics of these materials that improve the electrocatalytic activity of the modified surfaces.
Abstract: Dopamine (DA) is an important neurotransmitter and its abnormal concentrations are associated with different diseases. Electrochemical detection of DA in real samples is challenging because of the presence of high concentrations of electroactive interferents such as uric acid (UA) and ascorbic acid (AA). Chemically modified electrodes have been widely used to counter the problems of poor sensitivity and selectivity faced at bare electrodes. We have briefly reviewed the materials that have been extensively used to fabricate modified electrode surfaces for detection of DA. The characteristics of the materials that improve the electrocatalytic activity of the modified surfaces are discussed. The boundary of search was limited to the electrochemical methods dealing with the simultaneous detection of DA, UA, and AA levels or detection of only DA in the presence of UA and AA. Challenges associated with the quantitative determination of dopamine in real samples are critically reviewed and the possible solutions are described.

277 citations


Journal ArticleDOI
TL;DR: The results implied that the fluorescent N-CDs showed less cytotoxicity, further which was successfully applied as a staining probe for the confocal imaging of MDCK and HeLa cells.
Abstract: A fast and facile microwave approach for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is reported. The N-CDs were hydrothermally synthesized using l -ascorbic acid (AA) and β-alanine (BA) as the carbon precursor and the nitrogen dopant, respectively. The morphology of synthesized N-CDs was characterized by high resolution transmission electron microscopy (HR-TEM) and the elemental composition was analyzed using elemental mapping method. The crystallinity and graphitation of N-CDs were examined by X-ray diffraction (XRD) and Raman spectroscopy. The doping of nitrogen over the carbon dots (CDs) was revealed by attenuated total reflection conjunction with Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photo electron spectroscopy (XPS). The optical properties of synthesized N-CDs were examined by UV–Visible (UV–Vis) and fluorescence spectroscopy. The synthesized N-CDs emit strong blue fluorescence at 401 nm under excitation of 325 nm. The excitation dependent emission property of synthesized N-CDs was exposed from fluorescence results. The quantum yield of synthesized N-CDs is about 14% against the reference quinine sulfate. The cytotoxicity of synthesized N-CDs on Madin-Darby Canine Kidney (MDCK) and HeLa cells were evaluated through Cell Counting Kit-8 (CCK-8) cytotoxicity assay. The results implied that the fluorescent N-CDs showed less cytotoxicity, further which was successfully applied as a staining probe for the confocal imaging of MDCK and HeLa cells.

Journal ArticleDOI
TL;DR: Results indicate that the activation of antioxidant enzymes to scavenge superoxide anion and hydrogen peroxide by MT treatment was associated with the maintenance of membrane integrity, which might be a part of the mechanism implicated in delay of senescence in peach fruit.

Journal ArticleDOI
TL;DR: In this article, a reduced graphene oxide-zinc oxide (RGO-ZnO) composite was facilely fabricated by a spontaneous reduction of graphene oxide via zinc slice in one-pot approach at room temperature, and used to modify glassy carbon electrode (GCE) for developing of electrochemical biosensor.
Abstract: Reduced graphene oxide-zinc oxide (RGO–ZnO) composite was facilely fabricated by a spontaneous reduction of graphene oxide via zinc slice in one-pot approach at room temperature, and used to modify glassy carbon electrode (GCE) for developing of electrochemical biosensor (RGO–ZnO/GCE). The as-prepared RGO–ZnO was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was revealed that the existence of ZnO in RGO–ZnO/GCE largely enhanced the electroactive surface area (EASA) and therefore the sensitivity for electrochemical sensing. In the mixtures of ascorbic acid (AA), dopamine (DA) and uric acid (UA), the biosensor exhibited three well-resolved voltammetric peaks (Δ E AA–DA = 236 mV, Δ E DA–UA = 132 mV, Δ E AA–UA = 368 mV) in the differential pulse voltammetry (DPV) measurements, allowing a simultaneous electrochemical detection of these biomolecules. The liner relationships between current intensities and concentrations were found to be 50–2350 μM, 1–70 μM and 3–330 μM, with detection limits of 3.71 μM, 0.33 μM and 1.08 μM for AA, UA and DA, respectively. The as-prepared RGO–ZnO/GCE biosensor displayed a good reproducibility and stability and was applied for detection of of AA, DA and UA in real plasma and urine samples with satisfying results.

Journal ArticleDOI
TL;DR: Tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) andAir Pollution Index (API) can be screened and may be recommended for green belt development and the genotoxic impacts of PM on plants are emphasized.

Journal ArticleDOI
TL;DR: In this paper, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80°C).
Abstract: Development of improved methods for the synthesis of copper nanoparticles is of high priority for the advancement of material science and technology. Herein, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route. The method is based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80 °C). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements were taken to investigate the size, structure and composition of synthesized Cu nanocrystals, respectively. Average crystallite size of Cu nanocrystals calculated from the major diffraction peaks using the Scherrer formula is about 28.73 nm. It is expected that the outcomes of the study take us a step closer toward designing rational strategies for the synthesis of nascent Cu nanoparticles without inert gas protection.

Journal ArticleDOI
TL;DR: In this paper, the effects of an edible coating based on natural Aloe vera (AV) gel in combination with ascorbic acid (AA; 0, 1, 3 and 5% (w/v)) on postharvest quality of strawberries was studied.

Journal ArticleDOI
TL;DR: High-dose ascorbic acid may be considered as an effective and safe adjuvant therapy in surgical critically ill patients with septic shock and the most effective dose and the best time for its administration should be determined in future studies.
Abstract: Objective: Effects of ascorbic acid on hemodynamic parameters of septic shock were evaluated in nonsurgical critically ill patients in limited previous studies. In this study, the effect of high-dose ascorbic acid on vasopressor drug requirement was evaluated in surgical critically ill patients with septic shock. Methods: Patients with septic shock who required a vasopressor drug to maintain mean arterial pressure >65 mmHg were assigned to receive either 25 mg/kg intravenous ascorbic acid every 6 h or matching placebo for 72 h. Vasopressor dose and duration were considered as the primary outcomes. Duration of Intensive Care Unit (ICU) stay and 28-day mortality has been defined as secondary outcomes. Findings: During the study period, 28 patients (14 in each group) completed the trial. Mean dose of norepinephrine during the study period (7.44 ± 3.65 vs. 13.79 ± 6.48 mcg/min, P = 0.004) and duration of norepinephrine administration (49.64 ± 25.67 vs. 71.57 ± 1.60 h, P = 0.007) were significantly lower in the ascorbic acid than the placebo group. No statistically significant difference was detected between the groups regarding the length of ICU stay. However, 28-day mortality was significantly lower in the ascorbic acid than the placebo group (14.28% vs. 64.28%, respectively; P = 0.009). Conclusion: High-dose ascorbic acid may be considered as an effective and safe adjuvant therapy in surgical critically ill patients with septic shock. The most effective dose of ascorbic acid and the best time for its administration should be determined in future studies.

Journal ArticleDOI
TL;DR: In this article, a semi-automated system was developed to quantify the oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay.
Abstract: . The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r = 0.70–0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r = 0.49–0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily oxidative potential at this site over the 1998–2009 period. Time series epidemiological analyses were conducted to assess daily emergency department (ED) visits data for the five-county Atlanta metropolitan area based on the estimated 10-year backcast oxidative potential. Estimated AA activity was not statistically associated with any tested health outcome, while DTT activity was associated with ED visits for both asthma or wheeze and congestive heart failure. The findings point to the importance of both organic components and transition metals from biomass burning and mobile sources to adverse health outcomes in this region.

Journal ArticleDOI
TL;DR: It was depicted that high temperature severely reduced the pollen fertility, anther dehiscence, pollen retention, germination and metabolites synthesis in pollens of both rice cultivars, and exogenous application of various plant growth regulators assuaged the adverse effects of high temperature.
Abstract: Increasing temperature due to global warming has emerged one of the gravest threats to rice production. This study examined the influence of high temperature and exogenously applied plant growth regulators on pollen fertility, anther dehiscence, pollen germination and metabolites synthesis in pollens of two rice cultivars (IR-64 and Huanghuazhan (HHZ)). Plants were subjected to high day temperature (HDT), high night temperature (HNT) and control temperature (CT) in controlled growth chambers. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were used along with a nothing applied control. Our results depicted that high temperature severely reduced the pollen fertility, anther dehiscence, pollen retention, germination and metabolites synthesis in pollens of both rice cultivars. Nonetheless, exogenous application of various plant growth regulators assuaged the adverse effects of high temperature and Vc + Ve + MeJA + Br was found the best combination than the other treatments for every studied characteristic. The HNT posed more negative effects than the HDT. Variations were also apparent between cultivars and HHZ performed better than IR-64 under high-temperature stress, with higher pollen fertility, better anther dehiscence, and greater pollen retention and germination rates. The greater tolerance of HHZ to high temperature was related with the higher synthesis of metabolites in this cultivar.

Journal ArticleDOI
TL;DR: The HNP-PtTi alloy manifests intriguing application potential as the candidate for the application of the electrochemical sensor for simultaneous detection of AA, DA, and UA.

Journal ArticleDOI
TL;DR: The as-fabricated fluorescent sensing system was successfully applied to the analysis of AA in fresh fruits, vegetables, and commercial fruit juices samples with satisfactory results.
Abstract: This work describes a "switch-on" fluorescence approach for sensing of ascorbic acid (AA) in food samples. In the present method, the fluorescence intensity (FL) of carbon quantum dots (CQDs) was first quenched by addition of MnO2 nanosheets through an inner filter effect to form a CQDs-MnO2 probe. When reductive AA was introduced into the quenched CQDs solution, the added MnO2 was destroyed due to the redox reaction between AA and MnO2 nanosheets, and the FL of the system was recovered. Under the optimal conditions, the limit of detection for AA was 42 nM, with a wide concentration linear range of 0.18-90 μM. Furthermore, the as-fabricated fluorescent sensing system was successfully applied to the analysis of AA in fresh fruits, vegetables, and commercial fruit juices samples with satisfactory results.

Journal ArticleDOI
TL;DR: In this article, a direct-write laser scribing process was used to transform polyimide sheet into graphitic carbon with self-standing porous 3D morphology, and abundant edge planes.
Abstract: This study reports the fabrication of flexible electrochemical sensors using a direct-write laser scribing process that transforms commercial polyimide sheet into graphitic carbon with self-standing porous 3D morphology, and abundant edge planes. The heterogeneous electron transfer rate (k0) of the laser scribed graphene (LSG) electrodes for both inner-sphere and outer-sphere redox mediators, ferrocyanide ([Fe(CN)6]4−) and hexaammineruthenium ([Ru(NH3)6]3+) are estimated to be 0.1150 and 0.0868 cm s−1, respectively. These values are significantly higher than those for similar carbon based materials, which this study ascribes to the binder free 3D porous network of LSG with enriched edge plane sites. Further, k0 is enhanced up to 0.2823 and 0.2312 cm s−1 for inner and outer-sphere redox mediators by selective anchoring of Pt nanoparticles over LSG. The LSG electrodes exhibit significantly improved electrocatalytic activity toward oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Consequently, the detection of these biomarkers is achieved with high sensitivity of 237.76 and 250.69 μA mm−1 cm−2 (AA), 2259.9 and 6995.6 μA mm−1 cm−2 (DA) and 5405 and 8289 μA mm−1 cm−2 (UA) for LSG and Pt/LSG electrodes, respectively, in a wide concentration range. These results outperform previously reported 2D/3D graphene based electrodes.

Journal ArticleDOI
TL;DR: The results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1.
Abstract: Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1.

Journal ArticleDOI
TL;DR: Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress, and the highest grain production was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature Stress.
Abstract: A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

Journal ArticleDOI
01 Dec 2016-Small
TL;DR: A novel platform for targeted on-demand prodrug ascorbic acid delivery is fabricated using a bacterial hyaluronidase sensitive graphene-mesoporous silica nanosheet@hyaluronic acid-magnetic nanoparticles as the nanocarrier to treat bacterial infections.
Abstract: A novel platform for targeted on-demand prodrug ascorbic acid (AA) delivery is fabricated using a bacterial hyaluronidase sensitive graphene-mesoporous silica nanosheet@hyaluronic acid-magnetic nanoparticles as the nanocarrier to treat bacterial infections. The released AA can be converted to detrimental •OH in situ on the surface of bacteria. With the chemo-photothermal synergistic effect, the designed antibacterial system can effectively inactivate bacteria and disperse stubborn biofilm.

Journal ArticleDOI
TL;DR: It is demonstrated that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles andRoot exudates metabolomics revealed important detoxification mechanisms against nano-Cu stress.
Abstract: Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

Journal ArticleDOI
TL;DR: The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection and the application of 50–150 μM melatonin significantly improved the photosynthetic capacity.
Abstract: Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance.

Journal ArticleDOI
TL;DR: Light is shed on the importance of Fe(III)/Fe(II) cycle for the design of high efficient Fenton system and provides an alternative pathway for the organic contaminants removal.

Journal ArticleDOI
TL;DR: Investigation of the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress.
Abstract: Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’) under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

Journal ArticleDOI
TL;DR: It is concluded that BC could ameliorate Cd toxic effects in spinach through changing the physiological and biochemical attributes under Cd stress.
Abstract: Cadmium (Cd) has no known role in plant biology and is toxic to plants and animals. The Cd mainly accumulated in agricultural soils through anthropogenic activities, such as sewage water irrigation and phosphorus fertilization. Biochar (BC) has been proposed as an amendment to reduce metal toxicity in plants. The objective of this study was to evaluate the role of BC (cotton stick at a rate of 0, 3, and 5 %) on Cd uptake and the photosynthetic, physiological, and biochemical responses of spinach (Spinacia oleracea) grown in Cd-spiked soil (0, 25, 50, 75, and 100 mg Cd kg-1 soil). The results showed that Cd toxicity decreased growth, photosynthetic pigments, gas exchange characteristics, and amino acid and protein contents in 52-day-old spinach seedlings. The Cd treatments increased the concentrations of Cd, sugar, ascorbic acid, and malondialdehyde (MDA) in plants. The application of BC ameliorated the harmful effects of Cd in spinach plants. Under Cd stress, BC application increased the growth, photosynthesis, and protein contents and decreased Cd concentrations and MDA contents in plants. The maximum BC-mediated increase in dry biomass was about 25 % with 5 % BC application in control plants. It is concluded that BC could ameliorate Cd toxic effects in spinach through changing the physiological and biochemical attributes under Cd stress.