scispace - formally typeset
Search or ask a question

Showing papers on "Ascorbic acid published in 2019"


Journal ArticleDOI
11 Apr 2019
TL;DR: It is demonstrated that these wild edible leafy plants could be a potential source of natural antioxidants and a strong correlation between antioxidant activity with total phenolic and total flavonoid content was found.
Abstract: Eight selected wild vegetables from Nepal (Alternanthera sessilis, Basella alba, Cassia tora, Digera muricata, Ipomoea aquatica, Leucas cephalotes, Portulaca oleracea and Solanum nigrum) were investigated for their antioxidative potential using 2,2-dyphenyl-1-picrylhydrazyl (DPPH) scavenging, hydrogen peroxide (H2O2), ferric reducing antioxidant power (FRAP), and ferric thiocyanate (FTC) methods. Among the selected plant extracts C. tora displayed the highest DPPH radical scavenging activity with an IC50 value 9.898 μg/mL, whereas A. sessilis had the maximum H2O2 scavenging activity with an IC50 value 16.25 μg/mL—very close to that of ascorbic acid (16.26 μg/mL). C. tora showed the highest absorbance in the FRAP assay and the lowest lipid peroxidation in the FTC assay. A methanol extract of A. sessilis resulted in the greatest phenolic content (292.65 ± 0.42 mg gallic acid equivalent (GAE)/g) measured by the Folin–Ciocalteu reagent method, while the smallest content was recorded for B. alba (72.66 ± 0.46 GAE/g). The greatest flavonoid content was observed with extracts of P. oleracea (39.38 ± 0.57 mg quercetin equivalents (QE)/g) as measured by an aluminium chloride colorimetric method, while the least was recorded for I. aquatica (6.61 ± 0.42 QE/g). There was a strong correlation between antioxidant activity with total phenolic (DPPH, R2 = 0.75; H2O2, R2 = 0.71) and total flavonoid content (DPPH, R2 = 0.84; H2O2, R2 = 0.66). This study demonstrates that these wild edible leafy plants could be a potential source of natural antioxidants.

489 citations


Journal ArticleDOI
TL;DR: Graphene and its oxygenated derivatives, including reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors as discussed by the authors, and the discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility.
Abstract: Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters. Over the last decade, different nanomaterials have been exploited to design highly efficient biosensors for the detection of analyte biomolecules. The discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency. Graphene and its oxygenated derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors. The presence of oxygenated functional groups makes GO nanosheets strongly hydrophilic, facilitating chemical functionalization. Graphene, GO and rGO nanosheets can be easily combined with various types of inorganic nanoparticles, including metals, metal oxides, semiconducting nanoparticles, quantum dots, organic polymers and biomolecules, to create a diverse range of graphene-based nanocomposites with enhanced sensitivity for biosensor applications. This review summarizes the advances in two-dimensional (2D) and three-dimensional (3D) graphene-based nanocomposites as emerging electrochemical and fluorescent biosensing platforms for the detection of a wide range of biomolecules with enhanced sensitivity, selectivity and a low limit of detection. The biofunctionalization and nanocomposite formation processes of graphene-based materials and their unique properties, surface functionalization, enzyme immobilization strategies, covalent immobilization, physical adsorption, biointeractions and direct electron transfer (DET) processes are discussed in connection with the design and fabrication of biosensors. The enzymatic and nonenzymatic reactions on graphene-based nanocomposite surfaces for glucose- and cholesterol-related electrochemical biosensors are analyzed. This review covers a very broad range of graphene-based electrochemical and fluorescent biosensors for the detection of glucose, cholesterol, hydrogen peroxide (H2O2), nucleic acids (DNA/RNA), genes, enzymes, cofactors nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), dopamine (DA), ascorbic acid (AA), uric acid (UA), cancer biomarkers, pathogenic microorganisms, food toxins, toxic heavy metal ions, mycotoxins, and pesticides. The sensitivity and selectivity of graphene-based electrochemical and fluorescent biosensors are also examined with respect to interfering analytes present in biological systems. Finally, the future outlook for the development of graphene based biosensing technology is outlined.

454 citations


Journal ArticleDOI
TL;DR: This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where it is predicted that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities.
Abstract: Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350–380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60–90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli , due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.

397 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the impact of different solvents on extraction yields, phytochemical constituents and antioxidants, and in vitro anti-inflammatory activities of S. buxifolia.
Abstract: Severinia buxifolia (Rutaceae) is a promising source of bioactive compounds since it has been traditionally used for the treatment of various diseases. The present study aimed at evaluating the impact of different solvents on extraction yields, phytochemical constituents and antioxidants, and in vitro anti-inflammatory activities of S. buxifolia. The results showed that the used solvents took an important role in the yield of extraction, the content of chemical components, and the tested biological activities. Methanol was identified as the most effective solvent for the extraction, resulting in the highest extraction yield (33.2%) as well as the highest content of phenolic (13.36 mg GAE/g DW), flavonoid (1.92 mg QE/g DW), alkaloid (1.40 mg AE/g DW), and terpenoids (1.25%, w/w). The extract obtained from methanol exhibited high capacity of antioxidant (IC50 value of 16.99 μg/mL) and in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 28.86 μg/mL; antiproteinase activity: IC50 = 414.29 μg/mL; and membrane stabilization: IC50 = 319 μg/mL). The antioxidant activity of the S. buxifolia extract was found to be 3-fold higher than ascorbic acid, and the anti-inflammatory activity of S. buxifolia extract was comparable to aspirin. Therefore, methanol is recommended as the optimal solvent to obtain high content of phytochemical constituents as well as high antioxidants and in vitro anti-inflammatory constituents from the branches of S. buxifolia for utilization in pharmacognosy.

327 citations


Journal ArticleDOI
TL;DR: A flexible sweat analysis patch based on a silk fabric–derived carbon textile for simultaneous detection of six health-related biomarkers that has enabled the integration of selective detectors with signal collection and transmission components in this device to realize real-time analysis of sweat.
Abstract: Wearable sweat analysis devices for monitoring of multiple health-related biomarkers with high sensitivity are highly desired for noninvasive and real-time monitoring of human health. Here, we report a flexible sweat analysis patch based on a silk fabric–derived carbon textile for simultaneous detection of six health-related biomarkers. The intrinsically N-doped graphitic structure and the hierarchical woven, porous structure provided the carbon textile good electrical conductivity, rich active sites, and good water wettability for efficient electron transmission and abundant access to reactants, enabling it to serve as an excellent working electrode in electrochemical sensors. On the basis of the above, we fabricated a multiplex sweat analysis patch that is capable of simultaneous detection of glucose, lactate, ascorbic acid, uric acid, Na+, and K+. The integration of selective detectors with signal collection and transmission components in this device has enabled us to realize real-time analysis of sweat.

282 citations


Journal ArticleDOI
TL;DR: Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Abstract: Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.

270 citations


Journal ArticleDOI
Gaojie Li1, Zhixuan Cheng1, Qun Xiang1, Liuming Yan1, Xiaohong Wang1, Jiaqiang Xu1 
TL;DR: In this article, the PdAu/SnO2 sensor can not only effectively detect acetone at 250 °C with response of 6.6 to 2 ppm acetone, but also detect formaldehyde at 110 Ã 0 Ã Ã c with response 4.1-2 Ã 1 Ã 2 Ã ) formaldehyde, and the corresponding detection limit is as low as 45 Ã pb and 30 Ã n Ã
Abstract: In this study, SnO2 nanosheets (NSs) was firstly prepared by the hydro-solvothermal treatment, and then decorated with Pd, Au and PdAu bimetallic nanoparticles (NPs) by an in situ reduction with ascorbic acid (AA). Their morphology, chemistry, and crystal structure were characterized at the nanoscale. It was found that SnO2 NSs were flower-like with thickness of 7–12 nm, and PdAu NPs with the size of 3–10 nm were dispersed uniformly on the surface of SnO2 NSs. Their gas sensing properties were carefully studied. The results demonstrated that the PdAu/SnO2 sensor can not only effectively detect acetone at 250 °C with response of 6.6 to 2 ppm acetone, but also detect formaldehyde at 110 °C with response of 4.1–2 ppm formaldehyde, and the corresponding detection limit is as low as 45 ppb and 30 ppb, respectively. Moreover, the PdAu/SnO2 sensor exhibited excellent reusability, and reliability to the low concentration of acetone and good anti-interference to humidity and other biomarkers in human breath. Compared with that decorated with their parent metal (Pd or Au), the enhanced response of SnO2 NSs decorated with PdAu bimetallic NPs may be ascribed to the chemical sensitization of Au, the electronic sensitization of Pd and the synergistic effect of PdAu bimetallic NPs. The PdAu/SnO2 sensor has a great potential application in detecting formaldehyde and diabetes diagnosis.

260 citations


Journal ArticleDOI
TL;DR: This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner and confirmed the excessive production of ROS.
Abstract: Background The threat of drug-resistant Pseudomonas aeruginosa requires great efforts to develop highly effective and safe bactericide. Objective This study aimed to investigate the antibacterial activity and mechanism of silver nanoparticles (AgNPs) against multidrug-resistant P. aeruginosa. Methods The antimicrobial effect of AgNPs on clinical isolates of resistant P. aeruginosa was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). In multidrug-resistant P. aeruginosa, the alterations of morphology and structure were observed by the transmission electron microscopy (TEM); the differentially expressed proteins were analyzed by quantitative proteomics; the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining; the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was chemically measured and the apoptosis-like effect was determined by flow cytometry. Results Antimicrobial tests revealed that AgNPs had highly bactericidal effect on the drug-resistant or multidrug-resistant P. aeruginosa with the MIC range of 1.406-5.625 µg/mL and the MBC range of 2.813-5.625 µg/mL. TEM showed that AgNPs could enter the multidrug-resistant bacteria and impair their morphology and structure. The proteomics quantified that, in the AgNP-treated bacteria, the levels of SOD, CAT, and POD, such as alkyl hydroperoxide reductase and organic hydroperoxide resistance protein, were obviously high, as well as the significant upregulation of low oxygen regulatory oxidases, including cbb3-type cytochrome c oxidase subunit P2, N2, and O2. Further results confirmed the excessive production of ROS. The antioxidants, reduced glutathione and ascorbic acid, partially antagonized the antibacterial action of AgNPs. The apoptosis-like rate of AgNP-treated bacteria was remarkably higher than that of the untreated bacteria (P Conclusion This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner. The main mechanism involves the disequilibrium of oxidation and antioxidation processes and the failure to eliminate the excessive ROS.

256 citations


Journal ArticleDOI
TL;DR: A review in gold nanoparticles focusing on chemical reduction synthesis mechanisms is presented in this paper, where the most commonly used synthesis methods are: Turkevich Method, NaBH4 with/without citrate, Seeding-Growth, Synthesis by Ascorbic Acid, Green Synthesis, Brust-Schiffrin, and synthesis using other reducing agents.

244 citations


Journal ArticleDOI
01 Jan 2019
TL;DR: The synergistic effect of sustained release of copper ions, elevated ROS production ability and uniform dispersion of rGO-Cu2O nanocomposites resulted in the excellent antibacterial activities of r GO-Cu1nocomposite against Escherichia coli and Staphylococcus aureus.
Abstract: Stable reduced graphene oxide-cuprous oxide (rGO-Cu2O) nanocomposites with long-term antibacterial activities were prepared by reducing copper sulfate supported on GO using ascorbic acid as reducing agent in the presence of polyethylene glycol (PEG) and sodium hydroxide at room temperature. The rGO provided a protective barrier for Cu2O, preventing Cu2O from reacting with external solution to leach copper ions too quickly. Meanwhile, the rGO also promoted the separation of photoexcited charge carriers of Cu2O nanoparticles to enhance the oxidative stress reactive and protected Cu2O from falling apart in the phosphate buffered solution (PBS) solution to prolong the generation time of reactive oxygen species (ROS). More importantly, the large specific surface area of rGO improved the dispersibility of Cu2O by electrostatic interaction. The synergistic effect of sustained release of copper ions, elevated ROS production ability and uniform dispersion of rGO-Cu2O nanocomposites resulted in the excellent antibacterial activities of rGO-Cu2O nanocomposites against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) which were maintained around 70% and 65% and were increased by 40% and 35% compared with free Cu2O after immersing 30 days in PBS solutions.

229 citations


Journal ArticleDOI
TL;DR: In this paper, the Fe3O4/TAGA/epoxy nanocomposites presented the highest electromagnetic interference shielding effectiveness (EMI SE of 35 dB in the X-band).

Journal ArticleDOI
Jing Dong1, Jing Dong2, Dan Zhao2, Yi Lu2, Wei-Yin Sun2 
TL;DR: In this article, the authors provide an up-to-date development in luminescent metal-organic frameworks (LMOFs) with emphasis on synthetic approaches and their application in sensing biomolecules such as DNA/RNA, enzymes/proteins, amino acids, glucose, ascorbic acid and antibiotics.
Abstract: Photoluminescence of metal–organic frameworks (MOFs) is sensitive to the structure and concentration of chemical species in the surroundings since MOFs combine the advantages of highly ordered porous structures, varied luminescence origins and diversified host–guest interactions. The diversity and combination flexibility of the organic and inorganic components together with the voids within MOFs offer ample possibilities for tuning their luminescence properties. On the basis of their intrinsic framework structures and biocompatible building blocks, MOFs have stimulated great interest in the area of biosensors. By elaborating on these points, this review will provide up-to-date developments in luminescent MOFs (LMOFs) with emphasis on synthetic approaches and their application in sensing biomolecules. The design outline of LMOFs including functionalization with fluorescent linkers and metal centers and incorporating fluorescent guest molecules within MOFs is presented, and the sensing properties of LMOFs for biomolecules such as DNA/RNA, enzymes/proteins, amino acids, glucose, ascorbic acid, and antibiotics are summarized.

Journal ArticleDOI
TL;DR: The recovery of pepper phytochemicals present an interesting strategy in pursuit of new bioactive compounds and natural ingredients for agro-food, cosmetic and pharma industry uses, as replacements for the synthetic compounds and also in the valorisation of plant's by-products.

Journal ArticleDOI
TL;DR: In this article, the authors describe the various types of reactive oxygen species (ROS) and their production, and antioxidant defense mechanisms for ROS suppression, and describe the different types of ROS and their defense mechanisms.
Abstract: Reactive oxygen species (ROS) typically produce in algae and act as secondary messengers in numerous cellular processes. Under abiotic stresses, the balance between production and suppression of ROS disappears and causes increase of ROS. Increasing excessive ROS can cause damage to various cellular components comprising cell membranes, proteins and lipids. Algae have an antioxidant defense system to overcome on oxidative damage. Antioxidant defense mechanisms are of two types, namely enzymatic and non-enzymatic antioxidants. The enzymatic antioxidants include superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The non-enzymatic antioxidants include carotenoids, tocopherol, ascorbic acid, glutathione, flavonoids and phenolic compounds. In this review, we describe the various types of ROS and their production, and antioxidant defense mechanisms for ROS suppression.

Journal ArticleDOI
TL;DR: Oral treatment of APPswe/PS1dE9 mice with EGCG/AA NPs resulted in a marked increase in synapses, as judged by synaptophysin (SYP) expression, and reduction of neuroinflammation as well as amyloid &bgr; (A&b gr;) plaque burden and cortical levels of soluble and insoluble A&b Gr;(1‐42) peptide.

Journal ArticleDOI
TL;DR: The regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants are reviewed, with a special focus on fruits.
Abstract: Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonic acid might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus in fruits.

Journal ArticleDOI
TL;DR: In this article, a promising sensing platform for the detection of dopamine (DA) has been constructed using MnO2 nanowires-electrochemically reduced graphene oxide modified glassy carbon electrode (MnO2 NWs-ErGO/GCE).

Journal ArticleDOI
TL;DR: Mitochondria content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis is found and mitochondrial content is proposed as a biomarker for the response to platinum-based therapies.
Abstract: Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.

Journal ArticleDOI
Nan Cheng1, Jin-Cheng Li1, Dong Liu1, Yuehe Lin1, Dan Du1 
01 Nov 2019-Small
TL;DR: The CNT/FeNC with robust atomic Fe-Nx moieties is synthesised, showing superior peroxidase-like activity and provides a new type of signal element for developing various biosensing techniques.
Abstract: Single-atom catalysts are becoming a hot research topic owing to their unique characteristics of maximum specific activity and atomic utilization. Herein, a new single-atom nanozyme (SAN) based on single Fe atoms anchored on N-doped carbons supported on carbon nanotube (CNT/FeNC) is proposed. The CNT/FeNC with robust atomic Fe-Nx moieties is synthesised, showing superior peroxidase-like activity. Furthermore, the CNT/FeNC is used as the signal element in a series of paper-based bioassays for ultrasensitive detection of H2 O2 , glucose, and ascorbic acid. The SAN provides a new type of signal element for developing various biosensing techniques.

Journal ArticleDOI
TL;DR: The electrochemical performance of the developed system was similar or better than those obtained using commercial glassy carbon and screen-printed carbon electrodes and represents a significant advance in AM (3D-printing) technology for analytical chemistry.
Abstract: Herein, we report a complete additively manufactured (AM) electrochemical sensing platform. In this approach, a fully AM/3D-printed electrochemical system, using a conventional low-cost 3D printer (fused deposition modeling) fabricating both the conductive electrodes and the nonconductive/chemically inert electrochemical cell is reported. The electrodes (working, counter, and pseudo-reference) are AM using a conductive fused-filament comprised of a mixture of carbon black nanoparticles and polylactic acid (CB/PLA). AM components partially coated with silver ink presented a similar behavior to a conventional Ag/AgCl reference electrode. The performance of the AM working electrode was evaluated after a simple and fast polishing procedure on sandpaper and electrochemical activation in a NaOH solution (0.5 mol L-1). Following the electrochemical activation step, a considerable improvement in the electrochemical behavior (current intensity and voltammetric profile) was obtained for model analytes, such as dopamine, hexaammineruthenium(III) chloride, ferricyanide/ferrocyanide, uric acid, and ascorbic acid. Excellent repeatability (RSD = 0.4%, N = 10) and limit of detection (0.1 μmol L-1) were obtained with the all complete AM electrochemical system for dopamine analysis. The electrochemical performance of the developed system (after simple electrochemical activation of the working electrode) was similar or better than those obtained using commercial glassy carbon and screen-printed carbon electrodes. The results shown here represents a significant advance in AM (3D printing) technology for analytical chemistry.

Journal ArticleDOI
TL;DR: A RhB@MOF nanocomposite-based "on-off-on" fluorescent switching nanoprobe for highly sensitive and selective detection of Fe3+ and ascorbic acid and insight into the rational design of MOF-based biosensors for selective and sensitive detection of analytes is provided.
Abstract: Ferric ion (Fe3+) plays a vital role in cellular homeostasis. However, the detection of Fe3+ with rhodamine B (RhB) has potential problems, such as poor selectivity and low photostability. To address these problems, we rationally designed an RhB@MOF nanocomposite-based "on-off-on" fluorescent switching nanoprobe for highly sensitive and selective detection of Fe3+ and ascorbic acid. This RhB@MOF nanoprobe was prepared through a facile one-pot synthesis. Here MOF served as a selectivity regulator for the detection of Fe3+. By embedding RhB into the porous crystalline MOF, enhanced photostability and fluorescence lifetime of RhB to Fe3+ were achieved. The as-prepared RhB@MOF was demonstrated to be an ultrasensitive and selective nanoprobe for the detection of Fe3+ in human serum and ascorbic acid in rat brain microdialysate. Furthermore, inner filter effect (IFE) and photoinduced electron transfer (PET) were proposed and discussed to explain the selectivity and sensitivity of RhB to Fe3+ against other interfering substances. Our novel "on-off-on" nanoprobe provides insight into the rational design of MOF-based biosensors for selective and sensitive detection of analytes.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the influence of ultrasound treatments (0, 4, 8, 12, and 16 min) on the color attributes, ascorbic acid, phenolic compounds content and antioxidant activity of strawberry juice.

Journal ArticleDOI
TL;DR: A visible-light-responsive photocatalyst for the efficient degradation of methylene blue as a model pollutant dye is reported and green-emissive carbon quantum dots (CQDs) were synthesized from pear juice via a facile, scalable, one-pot solvothermal process.
Abstract: Visible-light-driven photocatalysts prepared using renewable resources are crucial but challenging to develop for the efficient degradation of organic pollutants, which is required to solve ever-increasing water deterioration issues. In this study, we report a visible-light-responsive photocatalyst for the efficient degradation of methylene blue (MB) as a model pollutant dye. Green-emissive carbon quantum dots (CQDs) were synthesized from pear juice via a facile, scalable, one-pot solvothermal process. The as-synthesized CQDs exhibit superior photocatalytic activity under visible-light irradiation owing to their efficient light absorption, electron transfer, and separation of photogenerated charge carriers, facilitating ~99.5% degradation of MB within 130 min. A possible mechanism for the photocatalysis is proposed on the basis of comprehensive active species trapping experiments. Furthermore, the CQDs were used in a specific sensitive assay for Fe(III) and ascorbic acid (AA), even with interference from other metal ions. The fluorescence emission of CQDs was “turned off” specifically upon binding of Fe(III) and “turned on” with AA. The prepared CQDs represent efficient photocatalysts and fluorescent probes that are not restricted by toxicity, cost, or lack of scalability.

Journal ArticleDOI
11 Sep 2019-BMJ
TL;DR: H pylori treatment for two weeks and vitamin or garlic supplementation for seven years were associated with a statistically significant reduced risk of death due to gastric cancer for more than 22 years and vitamin supplementation was also associated withA statistically significantly reduced incidence of Gastric cancer.
Abstract: Objective To assess the effects of Helicobacter pylori treatment, vitamin supplementation, and garlic supplementation in the prevention of gastric cancer. Design Blinded randomized placebo controlled trial. Setting Linqu County, Shandong province, China. Participants 3365 residents of a high risk region for gastric cancer. 2258 participants seropositive for antibodies to H pylori were randomly assigned to H pylori treatment, vitamin supplementation, garlic supplementation, or their placebos in a 2×2×2 factorial design, and 1107 H pylori seronegative participants were randomly assigned to vitamin supplementation, garlic supplementation, or their placebos in a 2×2 factorial design. Interventions H pylori treatment with amoxicillin and omeprazole for two weeks; vitamin (C, E, and selenium) and garlic (extract and oil) supplementation for 7.3 years (1995-2003). Main outcome measures Primary outcomes were cumulative incidence of gastric cancer identified through scheduled gastroscopies and active clinical follow-up through 2017, and deaths due to gastric cancer ascertained from death certificates and hospital records. Secondary outcomes were associations with other cause specific deaths, including cancers or cardiovascular disease. Results 151 incident cases of gastric cancer and 94 deaths from gastric cancer were identified during 1995-2017. A protective effect of H pylori treatment on gastric cancer incidence persisted 22 years post-intervention (odds ratio 0.48, 95% confidence interval 0.32 to 0.71). Incidence decreased significantly with vitamin supplementation but not with garlic supplementation (0.64, 0.46 to 0.91 and 0.81, 0.57 to 1.13, respectively). All three interventions showed significant reductions in gastric cancer mortality: fully adjusted hazard ratio for H pylori treatment was 0.62 (95% confidence interval 0.39 to 0.99), for vitamin supplementation was 0.48 (0.31 to 0.75), and for garlic supplementation was 0.66 (0.43 to 1.00). Effects of H pylori treatment on both gastric cancer incidence and mortality and of vitamin supplementation on gastric cancer mortality appeared early, but the effects of vitamin supplementation on gastric cancer incidence and of garlic supplementation only appeared later. No statistically significant associations were found between interventions and other cancers or cardiovascular disease. Conclusions H pylori treatment for two weeks and vitamin or garlic supplementation for seven years were associated with a statistically significant reduced risk of death due to gastric cancer for more than 22 years. H pylori treatment and vitamin supplementation were also associated with a statistically significantly reduced incidence of gastric cancer. Trial registration ClinicalTrials.gov NCT00339768.

Journal ArticleDOI
TL;DR: In this article, a new approach to synthesize graphene is oxidizing graphite powder with a mixture of H2SO4/H3PO4 acids and potassium permanganate, which differs from the traditional Hummers' method.
Abstract: A new approach to synthesize graphene is oxidizing graphite powder with a mixture of H2SO4/H3PO4 acids and potassium permanganate. Parameters such as reaction time, reaction temperature, and amount of concentration were varied to study the degree of oxidation of graphite to graphene oxide. Currently, an improved method for the preparation of graphene oxide was the most common one. A mixture of H2SO4/H3PO4 (9 : 1 volume ratio) instead of only H2SO4 resulted in increased hydrophilic and oxidized GO without the emission of toxic gas, which differs from the traditional Hummers’ method. The graphene oxide (GO) was converted to reduced graphene oxide (rGO) by chemical reduction using ascorbic acid as the reducing agent. The GO and rGO were characterized by UV-visible spectroscopy, FTIR spectroscopy, and X-ray diffraction patterns. The result showed that treating graphite powder with potassium permanganate (1 : 9) and a mixture of concentrated H2SO4/H3PO4 acids at 50°C for 12 hours resulted in a better oxidation degree. The designed synthesis strategy could be easily controlled and is an alternative green approach for the production of graphene oxide and reduced graphene oxide.

Journal ArticleDOI
TL;DR: The impact of vitamin C on innate and adaptive immune functions, its antimicrobial, antibacterial, antiviral, antiparasitic, and antifungal properties, and its adjunct treatment option for the combat of human infections by bacteria are reviewed.
Abstract: Humans have lost their vitamin C-synthesizing capacities during evolution. Therefore, the uptake of this essential compound from external sources is mandatory in order to prevent vitamin C-deficient conditions resulting in severe morbidities such as scurvy. The potent antioxidant, immunomodulatory, and antiinfectious effects of vitamin C are known since the 1930s. We here (i) review the impact of vitamin C on innate and adaptive immune functions, (ii) provide an overview of its antimicrobial, antibacterial, antiviral, antiparasitic, and antifungal properties, and finally, (iii) discuss vitamin C as an adjunct treatment option for the combat of human infections by bacteria, particularly by emerging multidrug-resistant species.


Journal ArticleDOI
TL;DR: In this paper, the authors used activated coke (AC) as a support for gold nanoparticles (Au NPs) anchoring to prepare Au/AC catalysts via a facile synthesis using ascorbic acid as a mild reducing agent.

Journal ArticleDOI
Jiahao Li1, Yiqing Yang1, Kang Sun1, Yi Chen1, Xuan Chen1, Xinghui Li1 
TL;DR: Interestingly, pretreatment with melatonin on leaves alleviated ROS burst, decreased malondialdehyde levels and maintain high photosynthetic efficiency, and confirmed that melatonin protects tea plants against abiotic stress-induced damages through detoxifying ROS and regulating antioxidant systems.
Abstract: Melatonin is a biological hormone that plays crucial roles in stress tolerance. In this study, we investigated the effect of exogenous melatonin on abiotic stress in the tea plant. Under cold, salt and drought stress, increasing malondialdehyde levels and decreasing maximum photochemical efficiency of PSII were observed in tea leaves. Meanwhile, the levels of reactive oxygen species (ROS) increased significantly under abiotic stress. Interestingly, pretreatment with melatonin on leaves alleviated ROS burst, decreased malondialdehyde levels and maintain high photosynthetic efficiency. Moreover, 100 μM melatonin-pretreated tea plants showed high levels of glutathione and ascorbic acid and increased the activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase under abiotic stress. Notably, melatonin treatments can positively up-regulate the genes (CsSOD, CsPOD, CsCAT and CsAPX) expression of antioxidant enzyme biosynthesis. Taken together, our results confirmed that melatonin protects tea plants against abiotic stress-induced damages through detoxifying ROS and regulating antioxidant systems.

Journal ArticleDOI
TL;DR: The obtained findings suggest potential of ginger extract as an additive in the food and pharmaceutical industries.
Abstract: Ginger (Zingiber officinale) has been used as a spice and medicine for over 200 years in Traditional Chinese Medicine. It is an important plant with several medicinal, and nutritional values used i...