scispace - formally typeset
Search or ask a question
Topic

Assisted GPS

About: Assisted GPS is a research topic. Over the lifetime, 23655 publications have been published within this topic receiving 252395 citations.


Papers
More filters
Book
01 Jan 1996
TL;DR: In this paper, the authors discuss the effects of RF interference on GPS Satellite Signal Receiver Tracking (GSRSR) performance and the integration of GPS with other Sensors, including the Russian GLONASS, Chinese Bediou, and Japanese QZSS systems.
Abstract: Fundamentals of Satellite Navigation. GPS Systems Segments. GPS Satellite Signal Characteristics and Message Formats. Satellite Signal Acquisitions and Tracking. Effects of RF Interference on GPS Satellite Signal Receiver Tracking. Performance of Standalone GPS. Differential GPS. Integration of GPS with other Sensors. Galileo. The Russian GLONASS, Chinese Bediou, and Japanese QZSS Systems. GNSS Markets and Applications.

4,475 citations

Book
01 Jan 1996
TL;DR: Differential GPS and Integrity Monitoring Differential GPS Pseudolites Wide Area differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Autonomic Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting GPS and Global Navigation Satellite System (GLONASS) GPS Navigation Applications Land Vehicle Navigation and Tracking Marine Applications Applications of the GPS to Air Traffic Control GPS Applications in General Aviation Aircraft Automatic Approach and Landing of Aircraft Using Integrity Beacons Spacecraft Attitude
Abstract: Differential GPS and Integrity Monitoring Differential GPS Pseudolites Wide Area Differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Autonomous Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting GPS and Global Navigation Satellite System (GLONASS) GPS Navigation Applications Land Vehicle Navigation and Tracking Marine Applications Applications of the GPS to Air Traffic Control GPS Applications in General Aviation Aircraft Automatic Approach and Landing Using GPS Precision Landing of Aircraft Using Integrity Beacons Spacecraft Attitude Control Using GPS Carrier Phase Special Applications GPS for Precise Time and Time Interval Measurement Surveying with the Global Position System Attitude Determination Geodesy Orbit Determination Test Range Instrumentation.

2,275 citations

Book
01 Dec 2010
TL;DR: This advanced tutorial will describe the GPS signals, the various measurements made by the GPS receivers, and estimate the achievable accuracies, and focus on topics which are more unique to radio navigation or GPS.
Abstract: The Global Positioning System (GPS) is a satellite-based navigation and time transfer system developed by the U.S. Department of Defense. It serves marine, airborne, and terrestrial users, both military and civilian. Specifically, GPS includes the Standard Positioning Service (SPS) which provides civilian users with 100 meter accuracy, and it serves military users with the Precise Positioning Service (PPS) which provides 20-m accuracy. Both of these services are available worldwide with no requirement for a local reference station. In contrast, differential operation of GPS provides 2- to 10-m accuracy to users within 1000 km of a fixed GPS reference receiver. Finally, carrier phase comparisons can be used to provide centimeter accuracy to users within 10 km and potentially within 100 km of a reference receiver. This advanced tutorial will describe the GPS signals, the various measurements made by the GPS receivers, and estimate the achievable accuracies. It will not dwell on those aspects of GPS which are well known to those skilled in the radio communications art, such as spread-spectrum or code division multiple access. Rather, it will focus on topics which are more unique to radio navigation or GPS. These include code-carrier divergence, codeless tracking, carrier aiding, and narrow correlator spacing.

2,203 citations

Book
01 Jan 1992
TL;DR: In this paper, the origins of GPS are discussed and the development of global surveying techniques are discussed. But the authors focus on the use of global positioning techniques and do not address the issues of accuracy and access of GPS data.
Abstract: 1 Introduction- 11 The origins of surveying- 12 Development of global surveying techniques- 121 Optical global triangulation- 122 Electromagnetic global trilateration- 13 History of the Global Positioning System- 131 Navigating with GPS- 132 Surveying with GPS- 2 Overview of GPS- 21 Basic concept- 22 Space segment- 221 Constellation- 222 Satellites- 223 Operational capabilities- 224 Denial of accuracy and access- 23 Control segment- 231 Master control station- 232 Monitor stations- 233 Ground control stations- 24 User segment- 241 User categories- 242 Receiver types- 243 Information services- 3 Reference systems- 31 Introduction- 32 Coordinate systems- 321 Definitions- 322 Transformations- 33 Time systems- 331 Definitions- 332 Conversions- 333 Calendar- 4 Satellite orbits- 41 Introduction- 42 Orbit description- 421 Keplerian motion- 422 Perturbed motion- 423 Disturbing accelerations- 43 Orbit determination- 431 Keplerian orbit- 432 Perturbed orbit- 44 Orbit dissemination- 441 Tracking networks- 442 Ephemerides- 5 Satellite signal- 51 Signal structure- 511 Physical fundamentals- 512 Components of the signal- 52 Signal processing- 521 Receiver design- 522 Processing techniques- 6 Observables- 61 Data acquisition- 611 Code pseudoranges- 612 Phase pseudoranges- 613 Doppler data- 614 Biases and noise- 62 Data combinations- 621 Linear phase combinations- 622 Code pseudorange smoothing- 63 Atmospheric effects- 631 Phase and group velocity- 632 Ionospheric refraction- 633 Tropospheric refraction- 634 Atmospheric monitoring- 64 Relativistic effects- 641 Special relativity- 642 General relativity- 643 Relevant relativistic effects for GPS- 65 Antenna phase center offset and variation- 66 Multipath- 661 General remarks- 662 Mathematical model- 663 Multipath reduction- 7 Surveying with GPS- 71 Introduction- 711 Terminology definitions- 712 Observation techniques- 713 Field equipment- 72 Planning a GPS survey- 721 General remarks- 722 Presurvey planning- 723 Field reconnaissance- 724 Monumentation- 725 Organizational design- 73 Surveying procedure- 731 Preobservation- 732 Observation- 733 Postobservation- 734 Ties to control monuments- 74 In situ data processing- 741 Data transfer- 742 Data processing- 743 Trouble shooting and quality control- 744 Datum transformations- 745 Computation of plane coordinates- 75 Survey report- 8 Mathematical models for positioning- 81 Point positioning- 811 Point positioning with code ranges- 812 Point positioning with carrier phases- 813 Point positioning with Doppler data- 82 Differential positioning- 821 Basic concept- 822 DGPS with code ranges- 823 DGPS with phase ranges- 83 Relative positioning- 831 Phase differences- 832 Correlations of the phase combinations- 833 Static relative positioning- 834 Kinematic relative positioning- 835 Pseudokinematic relative positioning- 9 Data processing- 91 Data preprocessing- 911 Data handling- 912 Cycle slip detection and repair- 92 Ambiguity resolution- 921 General aspects- 922 Basic approaches- 923 Search techniques- 924 Ambiguity validation- 93 Adjustment, filtering, and smoothing- 931 Least squares adjustment- 932 Kalman filtering- 933 Smoothing- 94 Adjustment of mathematical GPS models- 941 Linearization- 942 Linear model for point positioning with code ranges- 943 Linear model for point positioning with carrier phases- 944 Linear model for relative positioning- 95 Network adjustment- 951 Single baseline solution- 952 Multipoint solution- 953 Single baseline versus multipoint solution- 954 Least squares adjustment of baselines- 96 Dilution of precision- 97 Accuracy measures- 971 Introduction- 972 Chi-square distribution- 973 Specifications- 10 Transformation of GPS results- 101 Introduction- 102 Coordinate transformations- 1021 Cartesian coordinates and ellipsoidal coordinates- 1022 Global coordinates and local level coordinates- 1023 Ellipsoidal coordinates and plane coordinates- 1024 Height transformation- 103 Datum transformations- 1031 Three-dimensional transformation- 1032 Two-dimensional transformation- 1033 One-dimensional transformation- 104 Combining GPS and terrestrial data- 1041 Common coordinate system- 1042 Representation of measurement quantities- 11 Software modules- 111 Introduction- 112 Planning- 113 Data transfer- 114 Data processing- 115 Quality control- 116 Network computations- 117 Data base management- 118 Utilities- 119 Flexibility- 12 Applications of GPS- 121 General uses of GPS- 1211 Global uses- 1212 Regional uses- 1213 Local uses- 122 Attitude determination- 1221 Theoretical considerations- 1222 Practical considerations- 123 Airborne GPS for photo-control- 124 Interoperability of GPS- 1241 GPS and Inertial Navigation Systems- 1242 GPS and GLONASS- 1243 GPS and other sensors- 1244 GPS and the Federal Radionavigation Plan- 125 Installation of control networks- 1251 Passive control networks- 1252 Active control networks- 13 Future of GPS- 131 New application aspects- 132 GPS modernization- 1321 Future GPS satellites- 1322 Augmented signal structure- 133 GPS augmentation- 1331 Ground-based augmentation- 1332 Satellite-based augmentation- 134 GNSS- 1341 GNSS development- 1342 GNSS/Loran-C integration- 135 Hardware and software improvements- 1351 Hardware- 1352 Software- 136 Conclusion- References

1,975 citations

Proceedings ArticleDOI
26 Sep 2004
TL;DR: This paper introduces the sequential Monte Carlo Localization method and argues that it can exploit mobility to improve the accuracy and precision of localization.
Abstract: Many sensor network applications require location awareness, but it is often too expensive to include a GPS receiver in a sensor network node. Hence, localization schemes for sensor networks typically use a small number of seed nodes that know their location and protocols whereby other nodes estimate their location from the messages they receive. Several such localization techniques have been proposed, but none of them consider mobile nodes and seeds. Although mobility would appear to make localization more difficult, in this paper we introduce the sequential Monte Carlo Localization method and argue that it can exploit mobility to improve the accuracy and precision of localization. Our approach does not require additional hardware on the nodes and works even when the movement of seeds and nodes is uncontrollable. We analyze the properties of our technique and report experimental results from simulations. Our scheme outperforms the best known static localization schemes under a wide range of conditions.

1,114 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
76% related
Wireless
133.4K papers, 1.9M citations
74% related
Robustness (computer science)
94.7K papers, 1.6M citations
74% related
Software
130.5K papers, 2M citations
74% related
Support vector machine
73.6K papers, 1.7M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202245
2021133
2020466
2019836
20181,008