Topic

# Asymptotically optimal algorithm

About: Asymptotically optimal algorithm is a research topic. Over the lifetime, 2901 publications have been published within this topic receiving 71936 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this paper, the authors studied the asymptotic behavior of the cost of the solution returned by stochastic sampling-based path planning algorithms as the number of samples increases.

Abstract: During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

2,482 citations

••

[...]

TL;DR: In this paper, the authors derived asymptotically optimal tests for testing problems in which a nuisance parameter exists under the alternative hypothesis but not under the null, using a weighted average power criterion.

Abstract: This paper derives asymptotically optimal tests for testing problems in which a nuisance parameter exists under the alternative hypothesis but not under the null. For example, the results apply to tests of structural change with unknown changepoint. The testing problem considered is nonstandard and the classical asymptotic optimality results for the Lagrange multiplier, Wald, and likelihood ratio do not apply. A weighted average power criterion is used here to generate optimal tests. This criterion is similar to that used by A. Wald (1943) to obtain the classical asymptotic optimality properties of Wald tests in 'regular' testing problems. Copyright 1994 by The Econometric Society.

2,397 citations

•

[...]

TL;DR: The main contribution of the paper is the introduction of new algorithms, namely, PRM and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum.

Abstract: During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

2,210 citations

••

[...]

TL;DR: In this paper, the authors consider scaling the proposal distribution of a multidimensional random walk Metropolis algorithm in order to maximize the efficiency of the algorithm and obtain a weak convergence result as the dimension of a sequence of target densities, n, converges to $\infty$.

Abstract: This paper considers the problem of scaling the proposal distribution of a multidimensional random walk Metropolis algorithm in order to maximize the efficiency of the algorithm. The main result is a weak convergence result as the dimension of a sequence of target densities, n, converges to $\infty$. When the proposal variance is appropriately scaled according to n, the sequence of stochastic processes formed by the first component of each Markov chain converges to the appropriate limiting Langevin diffusion process. The limiting diffusion approximation admits a straightforward efficiency maximization problem, and the resulting asymptotically optimal policy is related to the asymptotic acceptance rate of proposed moves for the algorithm. The asymptotically optimal acceptance rate is 0.234 under quite general conditions. The main result is proved in the case where the target density has a symmetric product form. Extensions of the result are discussed.

1,639 citations

•

[...]

01 Jan 1981

TL;DR: In this article, the authors consider the problem of asymptotically optimal estimators and compare different estimators in terms of the mean square deviation from the parameter or perhaps in some other way.

Abstract: when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ..., X n be independent observations with the joint probability density !(x, O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0: ( X b ..., X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects."

1,364 citations