scispace - formally typeset
Search or ask a question
Topic

ATF6

About: ATF6 is a research topic. Over the lifetime, 1494 publications have been published within this topic receiving 108483 citations. The topic is also known as: ATF6A & ACHM7.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

Journal ArticleDOI
25 Nov 2011-Science
TL;DR: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum, where they fold and assemble, and only properly assembled proteins advance from the ER to the cell surface.
Abstract: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.

4,468 citations

Journal ArticleDOI
28 Dec 2001-Cell
TL;DR: The transcription factor XBP1, a target of ATF6, is identified as a mammalian substrate of such an unconventional mRNA splicing system and it is shown that only the spliced form of X BP1 can activate the UPR efficiently.

3,635 citations

Journal ArticleDOI
21 Jan 1999-Nature
TL;DR: The cloning of perk is described, a gene encoding a type I transmembrane ER-resident protein that contains a protein-kinase domain most similar to that of the known eIF2α kinases, PKR and HRI that implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.
Abstract: Protein synthesis and the folding of the newly synthesized proteins into the correct three-dimensional structure are coupled in cellular compartments of the exocytosis pathway by a process that modulates the phosphorylation level of eukaryotic initiation factor-2alpha (eIF2alpha) in response to a stress signal from the endoplasmic reticulum (ER). Activation of this process leads to reduced rates of initiation of protein translation during ER stress. Here we describe the cloning of perk, a gene encoding a type I transmembrane ER-resident protein. PERK has a lumenal domain that is similar to the ER-stress-sensing lumenal domain of the ER-resident kinase Ire1, and a cytoplasmic portion that contains a protein-kinase domain most similar to that of the known eIF2alpha kinases, PKR and HRI. ER stress increases PERK's protein-kinase activity and PERK phosphorylates eIF2alpha on serine residue 51, inhibiting translation of messenger RNA into protein. These properties implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.

3,058 citations

Journal ArticleDOI
Claudio Hetz1
TL;DR: Insight is provided into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6).
Abstract: Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.

3,027 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
89% related
Apoptosis
115.4K papers, 4.8M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Gene expression
113.3K papers, 5.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022163
2021163
2020128
2019114
2018108