scispace - formally typeset
Search or ask a question
Topic

Atmosphere of Earth

About: Atmosphere of Earth is a research topic. Over the lifetime, 2426 publications have been published within this topic receiving 98785 citations. The topic is also known as: Earth's atmosphere.


Papers
More filters
Book
01 Jan 1997
TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Abstract: 1 The Atmosphere. 2 Atmospheric Trace Constituents. 3 Chemical Kinetics. 4 Atmospheric Radiation and Photochemistry. 5 Chemistry of the Stratosphere. 6 Chemistry of the Troposphere. 7 Chemistry of the Atmospheric Aqueous Phase. 8 Properties of the Atmospheric Aerosol. 9 Dynamics of Single Aerosol Particles. 10 Thermodynamics of Aerosols. 11 Nucleation. 12 Mass Transfer Aspects of Atmospheric Chemistry. 13 Dynamics of Aerosol Populations. 14 Organic Atmospheric Aerosols. 15 Interaction of Aerosols with Radiation. 16 Meteorology of the Local Scale. 17 Cloud Physics. 18 Atmospheric Diffusion. 19 Dry Deposition. 20 Wet Deposition. 21 General Circulation of the Atmosphere. 22 Global Cycles: Sulfur and Carbon. 23 Climate and Chemical Composition of the Atmosphere. 24 Aerosols and Climate. 25 Atmospheric Chemical Transport Models. 26 Statistical Models.

9,021 citations

Journal ArticleDOI
TL;DR: In this paper, the MSIS-86 empirical model has been extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions.
Abstract: The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause.

2,359 citations

Journal ArticleDOI
23 Mar 1990-Science
TL;DR: The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2, and a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.
Abstract: Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

2,016 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect.
Abstract: It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

1,837 citations

Book
29 Oct 1999
TL;DR: In this paper, the authors present the bulk composition, structure, and dynamics of the atmosphere and discuss the chemistry of the Troposphere: the Methane Oxidation Cycle, ozone, and sulfur compounds.
Abstract: Bulk Composition, Structure, and Dynamics of the Atmosphere. Photochemical Processes and Elementary Reactions. Chemistry of the Stratosphere. Chemistry of the Troposphere: The Methane Oxidation Cycle. Ozone in the Troposphere. Hydrocarbons, Halocarbons, and Other Volatile Organic Compounds. The Atmospheric Aerosol. Chemistry of Clouds and Precipitation. Nitrogen Compounds in the Troposphere. Sulfur Compounds in the Atmosphere. Geochemistry of Carbon Dioxide. The Evolution of the Atmosphere. References. Appendix: Supplementary Tables.

1,528 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
82% related
Radiative transfer
43.2K papers, 1.1M citations
79% related
Sea ice
24.3K papers, 876.6K citations
78% related
Aerosol
33.8K papers, 1.1M citations
78% related
Mantle (geology)
26.1K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231
20222
202119
202034
201929
201826