scispace - formally typeset
Topic

Atmospheric methane

About: Atmospheric methane is a(n) research topic. Over the lifetime, 2034 publication(s) have been published within this topic receiving 119616 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Knowing the factors that impact methane production can result in the development of mitigation strategies to reduce methane losses by cattle and implementation of these strategies should result in enhanced animal productivity and decreased contributions by cattle to the atmospheric methane budget.
Abstract: Increasing atmospheric concentrations of methane have led scientists to examine its sources of origin. Ruminant livestock can produce 250 to 500 L of methane per day. This level of production results in estimates of the contribution by cattle to global warming that may occur in the next 50 to 100 yr to be a little less than 2%. Many factors influence methane emissions from cattle and include the following: level of feed intake, type of carbohydrate in the diet, feed processing, addition of lipids or ionophores to the diet, and alterations in the ruminal microflora. Manipulation of these factors can reduce methane emissions from cattle. Many techniques exist to quantify methane emissions from individual or groups of animals. Enclosure techniques are precise but require trained animals and may limit animal movement. Isotopic and nonisotopic tracer techniques may also be used effectively. Prediction equations based on fermentation balance or feed characteristics have been used to estimate methane production. These equations are useful, but the assumptions and conditions that must be met for each equation limit their ability to accurately predict methane production. Methane production from groups of animals can be measured by mass balance, micrometeorological, or tracer methods. These techniques can measure methane emissions from animals in either indoor or outdoor enclosures. Use of these techniques and knowledge of the factors that impact methane production can result in the development of mitigation strategies to reduce methane losses by cattle. Implementation of these strategies should result in enhanced animal productivity and decreased contributions by cattle to the atmospheric methane budget.

1,987 citations

Book

[...]

29 Oct 1999
TL;DR: In this paper, the authors present the bulk composition, structure, and dynamics of the atmosphere and discuss the chemistry of the Troposphere: the Methane Oxidation Cycle, ozone, and sulfur compounds.
Abstract: Bulk Composition, Structure, and Dynamics of the Atmosphere. Photochemical Processes and Elementary Reactions. Chemistry of the Stratosphere. Chemistry of the Troposphere: The Methane Oxidation Cycle. Ozone in the Troposphere. Hydrocarbons, Halocarbons, and Other Volatile Organic Compounds. The Atmospheric Aerosol. Chemistry of Clouds and Precipitation. Nitrogen Compounds in the Troposphere. Sulfur Compounds in the Atmosphere. Geochemistry of Carbon Dioxide. The Evolution of the Atmosphere. References. Appendix: Supplementary Tables.

1,517 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors identify and evaluate several constraints on the budget of atmospheric methane, its sources, sinks and residence time, and construct a list of sources and sinks, identities, and sizes.
Abstract: Methane is the most abundant organic chemical in Earth's atmosphere, and its concentration is increasing with time, as a variety of independent measurements have shown. Photochemical reactions oxidize methane in the atmosphere; through these reactions, methane exerts strong influence over the chemistry of the troposphere and the stratosphere and many species including ozone, hydroxyl radicals, and carbon monoxide. Also, through its infrared absorption spectrum, methane is an important greenhouse gas in the climate system. We describe and enumerate key roles and reactions. Then we focus on two kinds of methane production: microbial and thermogenic. Microbial methanogenesis is described, and key organisms and substrates are identified along with their properties and habitats. Microbial methane oxidation limits the release of methane from certain methanogenic areas. Both aerobic and anaerobic oxidation are described here along with methods to measure rates of methane production and oxidation experimentally. Indicators of the origin of methane, including C and H isotopes, are reviewed. We identify and evaluate several constraints on the budget of atmospheric methane, its sources, sinks and residence time. From these constraints and other data on sources and sinks we construct a list of sources and sinks, identities, and sizes. The quasi-steady state (defined in the text) annual source (or sink) totals about 310(±60) × 1012 mol (500(±95) × 1012 g), but there are many remaining uncertainties in source and sink sizes and several types of data that could lead to stronger constraints and revised estimates in the future. It is particularly difficult to identify enough sources of radiocarbon-free methane.

1,478 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions.
Abstract: Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.

1,381 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations, focusing on methane emissions, and find that 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life time of a well.
Abstract: We evaluate the greenhouse gas footprint of natural gas obtained by high- volume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life- time of a well. These methane emissions are at least 30% more than and perhaps more than twice as great as those from conventional gas. The higher emissions from shale gas occur at the time wells are hydraulically fractured—as methane escapes from flow-back return fluids—and during drill out following the fracturing. Methane is a powerful greenhouse gas, with a global warming potential that is far greater than that of carbon dioxide, particularly over the time horizon of the first few decades following emission. Methane contributes substantially to the greenhouse gas footprint of shale gas on shorter time scales, dominating it on a 20-year time horizon. The footprint for shale gas is greater than that for conventional gas or oil when viewed on any time horizon, but particularly so over 20 years. Compared to coal, the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.

1,172 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
86% related
Aerosol
33.8K papers, 1.1M citations
82% related
Global warming
36.6K papers, 1.6M citations
81% related
Climate change
99.2K papers, 3.5M citations
80% related
Ecosystem
25.4K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202174
202077
201974
201872
201782