scispace - formally typeset
Search or ask a question

Showing papers on "Atmospheric methane published in 2014"


Journal ArticleDOI
31 Jan 2014-Science
TL;DR: Atmospheric concentrations of the greenhouse gas methane are rising, but the reasons remain incompletely understood because of limited knowledge of what controls the global methane budget.
Abstract: Roughly one-fifth of the increase in radiative forcing by human-linked greenhouse gases since 1750 is due to methane. The past three decades have seen prolonged periods of increasing atmospheric methane, but the growth rate slowed in the 1990s ( 1 ), and from 1999 to 2006, the methane burden (that is, the total amount of methane in the air) was nearly constant. Yet strong growth resumed in 2007. The reasons for these observed changes remain poorly understood because of limited knowledge of what controls the global methane budget ( 2 ).

447 citations


Journal ArticleDOI
TL;DR: It is suggested that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types.
Abstract: Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.

402 citations


Journal ArticleDOI
24 Jul 2014-Nature
TL;DR: The estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent and potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
Abstract: Observations and modelling show that the deep thermokarst lakes that formed in Siberia and Alaska when the permafrost warmed in the Holocene epoch changed from climate-warming methane sources to climate-cooling carbon sinks about 5,000 years ago. With the onset of a warmer Holocene climate, permafrost degradation gave rise to numerous thermokarst lakes — lakes formed when meltwater accumulates in surface depressions over thawing permafrost — across large regions of Siberia, Alaska and northern Canada. These lakes are commonly regarded as a net source of atmospheric methane and carbon dioxide due to organic matter degradation. But the question arises, can carbon taken up by these lakes in the form of organic matter accumulation offset their greenhouse gas emissions? This study finds that carbon accumulation in deep thermokarst lake sediments increases the circumpolar peat carbon pool estimate for permafrost regions by more than half, and is larger than the mass of Pleistocene-aged permafrost carbon released as greenhouses gases when the lakes first formed. The authors suggest that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7,8,9, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.

232 citations


Book ChapterDOI
TL;DR: A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable "air" released by shallow sediments in Lake Maggiore.
Abstract: Methane is the most abundant hydrocarbon in the atmosphere. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Methane has been studied as an atmospheric constituent for over 200 years. A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable ‘air’ released by shallow sediments in Lake Maggiore. This chapter attempts to summarize our current knowledge of the global methane budget, our understanding of physical and microbiological controls on CH 4 sources and sinks, and how well models are representing these processes.

135 citations


Journal ArticleDOI
TL;DR: The contribution of vegetation to the global annual flux of methane (CH4) to the atmosphere is fairly well constrained at ca. 645 Tg CH4 year−1 as discussed by the authors, but the relative magnitude of the fluxes generated from different natural (e.g. wetlands, deep seepage, hydrates, ocean sediments) and anthropogenic sources remain poorly resolved.
Abstract: Currently, the global annual flux of methane (CH4) to the atmosphere is fairly well constrained at ca. 645 Tg CH4 year−1. However, the relative magnitudes of the fluxes generated from different natural (e.g. wetlands, deep seepage, hydrates, ocean sediments) and anthropogenic sources remain poorly resolved. Of the identified natural sources, the contribution of vegetation to the global methane budget is arguably the least well understood. Historically, reviews of the contribution of vegetation to the global methane flux have focused on the role of plants as conduits for soil-borne methane emissions from wetlands, or the aerobic production of methane within plant tissues. Many recent global budgets only include the latter pathway (aerobic methane production) in estimating the importance of terrestrial vegetation to atmospheric CH4 flux. However, recent experimental evidence suggests several novel pathways through which vegetation can contribute to the flux of this globally important, trace greenhouse gas (GHG), such as plant cisterns that act as cryptic wetlands, heartwood rot in trees, the degradation of coarse woody debris and litter, or methane transport through herbaceous and woody plants. Herein, we synthesize the existing literature to provide a comprehensive estimate of the role of modern vegetation in the global methane budget. This first, albeit uncertain, estimate indicates that vegetation may represent up to 22 % of the annual flux of methane to the atmosphere, contributing ca. 32–143 Tg CH4 year−1 to the global flux of this important trace GHG. Overall, our findings emphasize the need to better resolve the role of vegetation in the biogeochemical cycling of methane as an important component of closing the gap in the global methane budget.

133 citations


Journal ArticleDOI
TL;DR: CarbonTracker-CH4 as discussed by the authors is able to simulate the observed zonal average mole fractions and capture inter-annual variability in emissions quite well at high northern latitudes (53-90° N).
Abstract: . We describe an assimilation system for atmospheric methane (CH4), CarbonTracker-CH4, and demonstrate the diagnostic value of global or zonally averaged CH4 abundances for evaluating the results. We show that CarbonTracker-CH4 is able to simulate the observed zonal average mole fractions and capture inter-annual variability in emissions quite well at high northern latitudes (53–90° N). In contrast, CarbonTracker-CH4 is less successful in the tropics where there are few observations and therefore misses significant variability and is more influenced by prior flux estimates. CarbonTracker-CH4 estimates of total fluxes at high northern latitudes are about 81 ± 7 Tg CH4 yr−1, about 12 Tg CH4 yr−1 (13%) lower than prior estimates, a result that is consistent with other atmospheric inversions. Emissions from European wetlands are decreased by 30%, a result consistent with previous work by Bergamaschi et al. (2005); however, unlike their results, emissions from wetlands in boreal Eurasia are increased relative to the prior estimate. Although CarbonTracker-CH4 does not estimate an increasing trend in emissions from high northern latitudes for 2000 through 2010, significant inter-annual variability in high northern latitude fluxes is recovered. Exceptionally warm growing season temperatures in the Arctic occurred in 2007, a year that was also anonymously wet. Estimated emissions from natural sources were greater than the decadal average by 4.4 ± 3.8 Tg CH4 yr−1 in 2007. CarbonTracker-CH4 estimates for temperate latitudes are only slightly increased over prior estimates, but about 10 Tg CH4 yr−1 is redistributed from Asia to North America. This difference exceeds the estimated uncertainty for North America (±3.5 Tg CH4 yr−1). We used time invariant prior flux estimates, so for the period from 2000 to 2006, when the growth rate of global atmospheric CH4 was very small, the assimilation does not produce increases in natural or anthropogenic emissions in contrast to bottom-up emission data sets. After 2006, when atmospheric CH4 began its recent increases, CarbonTracker-CH4 allocates some of the increases to anthropogenic emissions at temperate latitudes, and some to tropical wetland emissions. For temperate North America the prior flux increases by about 4 Tg CH4 yr−1 during winter when biogenic emissions are small. Examination of the residuals at some North American observation sites suggests that increased gas and oil exploration may play a role since sites near fossil fuel production are particularly hard for the inversion to fit and the prior flux estimates at these sites are apparently lower and lower over time than what the atmospheric measurements imply. The tropics are not currently well resolved by CarbonTracker-CH4 due to sparse observational coverage and a short assimilation window. However, there is a small uncertainty reduction and posterior emissions are about 18% higher than prior estimates. Most of this increase is allocated to tropical South America rather than being distributed among the global tropics. Our estimates for this source region are about 32 ± 4 Tg CH4 yr−1, in good agreement with the analysis of Melack et al. (2004) who obtained 29 Tg CH4 yr−1 for the most productive region, the Amazon Basin.

123 citations


Journal ArticleDOI
TL;DR: Using a combination of field sampling, incubation experiments, and modeling, this paper showed that the recurring midwater methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones.
Abstract: The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water was up to 5 mmol m22 d21. Mid-water methane oversaturation was also observed in nine other lakes that collectively showed a strongly negative gradient of methane concentration within 0–20% dissolved oxygen (DO) in the bottom water, and a positive gradient within $ 20% DO in the upper water column. Further investigation into the responsible organisms and biochemical pathways will help improve our understanding of the global methane cycle. Methane accounts for 20% of the total radiative forcing among all long-lived greenhouse gases and has an estimated global warming potential 25 times that of CO2 in the coming century (Forster et al. 2007). Balancing the global methane budget, however, remains problematic due to uncertainty in its sources and sinks (Conrad 2009; Bastviken et al. 2011). Besides geological and anthropogenic emissions, methane is also produced by methanogens via three major pathways: acetoclastic, methylotrophic, and hydrogenotrophic methane production (Mah et al. 1977). Many of the enzymes involved are believed to be sensitive to oxygen (Jarrell 1985). Accordingly, a longstanding paradigm is that biological production of methane occurs exclusively under anoxic conditions (Mah et al. 1977). Recent studies suggested that terrestrial plants may emit methane under aerobic conditions (Keppler et al. 2006), and saprotrophic fungi are able to produce methane independently of methanogenic archaea (Lenhart et al. 2012). Hence, the methane cycle appears to be more

113 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of temperature on rates of sediment methanogenesis and water column Mox in two shallow Arctic Alaskan lakes were evaluated in 2010, and the results suggest that Mox will likely offset increased MG in response to elevated temperature regimes as a function of ongoing climate change.
Abstract: Large uncertainties exist regarding the influence of ongoing climate change to microbially mediated methane cycling in arctic lakes. Specifically, the coupled response of methanogenesis (MG) and methane oxidation (Mox) to increased temperature is poorly understood. Therefore, the effect of temperature on rates of sediment MG and water column Mox in two shallow Arctic Alaskan lakes were evaluated in 2010. To understand the capacity of Mox to offset potential increases in dissolved methane concentrations, kinetics of water column Mox were also determined. Rates of MG responded positively to increased temperature with a greater influence exerted at higher incubation temperatures. Substrate-saturated Mox significantly increased with temperature and was controlled by substrate and temperature interactions. In contrast, substrate-limited Mox was not influenced by temperature and was controlled by substrate supply. Analysis of Mox kinetics pointed to a community of water column dwelling methane oxidizing bacteria that are capable of oxidizing dissolved methane concentrations far in excess of observed levels. Assuming no diffusion limitation, our results suggest that Mox will likely offset increased MG in response to elevated temperature regimes as a function of ongoing climate change.

105 citations


Journal ArticleDOI
TL;DR: In this paper, a new climate-biosphere-chemistry modeling framework was proposed to determine oxidant levels in the present and past troposphere, using the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE.
Abstract: . The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate–biosphere–chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE, with land cover and fire emissions from dynamic global vegetation models. We present time-slice simulations for the present day, late preindustrial era (AD 1770), and the Last Glacial Maximum (LGM, 19–23 ka), and we test the sensitivity of model results to uncertainty in lightning and fire emissions. We find that most preindustrial and paleo climate simulations yield reduced oxidant levels relative to the present day. Contrary to prior studies, tropospheric mean OH in our ensemble shows little change at the LGM relative to the preindustrial era (0.5 ± 12 %), despite large reductions in methane concentrations. We find a simple linear relationship between tropospheric mean ozone photolysis rates, water vapor, and total emissions of NOx and reactive carbon that explains 72 % of the variability in global mean OH in 11 different simulations across the last glacial–interglacial time interval and the industrial era. Key parameters controlling the tropospheric oxidative capacity over glacial–interglacial periods include overhead stratospheric ozone, tropospheric water vapor, and lightning NOx emissions. Variability in global mean OH since the LGM is insensitive to fire emissions. Our simulations are broadly consistent with ice-core records of Δ17O in sulfate and nitrate at the LGM, and CO, HCHO, and H2O2 in the preindustrial era. Our results imply that the glacial–interglacial changes in atmospheric methane observed in ice cores are predominantly driven by changes in its sources as opposed to its sink with OH.

104 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed measurements made by continuously recording automated bubble traps in an impounded river in central Europe and investigate the mechanisms affecting the temporal dynamics of bubble release from cohesive sediments.
Abstract: Freshwater systems contribute significantly to the global atmospheric methane budget. A large fraction of the methane emitted from freshwaters is transported via ebullition. However, due to its strong variability in space and time, accurate measurements of ebullition rates are difficult; hence, the uncertainty regarding its contribution to global budgets is large. Here, we analyze measurements made by continuously recording automated bubble traps in an impounded river in central Europe and investigate the mechanisms affecting the temporal dynamics of bubble release from cohesive sediments. Our results show that the main triggers of bubble release were pressure changes, originating from the passage of ship lock-induced surges and ship passages. The response to physical forcing was also affected by previous outgassing. Ebullition rates varied strongly over all relevant timescales from minutes to days; therefore, representative ebullition estimates could only be inferred with continuous sampling over long periods. Since ebullition was found to be episodic, short-term measurement periods of a few hours or days will likely underestimate ebullition rates. Our results thus indicate that flux estimates could be grossly underestimated (by up to ~50%) if the correct temporal resolution is not used during data collection.

103 citations


Journal ArticleDOI
01 Jan 2014
TL;DR: In this article, a detailed study of a subregion of this area, which covers an active gas ebullition area of 175 km2 characterized by 10 gas flares reaching from the seafloor at ~245 m up to 50 m water depth, was conducted to identify the fate of the released gas due to dissolution of methane from gas bubbles and subsequent mixing, transport and microbial oxidation.
Abstract: In the Arctic Seas, the West Spitsbergen continental margin represents a prominent methane seep area. In this area, free gas formation and gas ebullition as a consequence of hydrate dissociation due to global warming are currently under debate. Recent studies revealed shallow gas accumulation and ebullition of methane into the water column at more than 250 sites in an area of 665 km2. We conducted a detailed study of a subregion of this area, which covers an active gas ebullition area of 175 km2 characterized by 10 gas flares reaching from the seafloor at~245 m up to 50 m water depth to identify the fate of the released gas due to dissolution of methane from gas bubbles and subsequent mixing, transport and microbial oxidation. The oceanographic data indicated a salinity-controlled pycnocline situated ~20 m above the seafloor. A high resolution sampling program at the pycnocline at the active gas ebullition flare area revealed that the methane concentration gradient is strongly controlled by the pycnocline. While high methane concentrations of up to 524 nmol L−1 were measured below the pycnocline, low methane concentrations of less than 20 nmol L−1 were observed in the water column above. Variations in the δ13CCH4 values point to a 13C depleted methane source (~−60‰ VPDB) being mainly mixed with a background values of the ambient water (~−37.5‰ VPDB). A gas bubble dissolution model indicates that ~80% of the methane released from gas bubbles into the ambient water takes place below the pycnocline. This dissolved methane will be laterally transported with the current northwards and most likely microbially oxidized in between 50 and 100 days, since microbial CH4 oxidation rates of 0.78 nmol d−1 were measured. Above the pycnocline, methane concentrations decrease to local background concentration of ~10 nmol L−1. Our results suggest that the methane dissolved from gas bubbles is efficiently trapped below the pycnocline and thus limits the methane concentration in surface water and the air–sea exchange during summer stratification. During winter the lateral stratification breaks down and fractions of the bottom water enriched in methane may be vertically mixed and thus be potentially an additional source for atmospheric methane.

Journal ArticleDOI
TL;DR: In this paper, satellite retrievals of methane weighted atmospheric columns are assimilated within a Bayesian inversion system to infer the global and regional methane emissions and sinks for the period August 2009 to July 2010.
Abstract: . Satellite retrievals of methane weighted atmospheric columns are assimilated within a Bayesian inversion system to infer the global and regional methane emissions and sinks for the period August 2009 to July 2010. Inversions are independently computed from three different space-borne observing systems and one surface observing system under several hypotheses for prior-flux and observation errors. Posterior methane emissions are compared and evaluated against surface mole fraction observations via a chemistry-transport model. Apart from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY), the simulations agree fairly well with the surface mole fractions. The most consistent configurations of this study using TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer), IASI (Infrared Atmospheric Sounding Interferometer) or surface measurements induce posterior methane global emissions of, respectively, 565 ± 21 Tg yr−1, 549 ± 36 Tg yr−1 and 538 ± 15 Tg yr−1 over the one-year period August 2009–July 2010. This consistency between the satellite retrievals (apart from SCIAMACHY) and independent surface measurements is promising for future improvement of CH4 emission estimates by atmospheric inversions.

Journal ArticleDOI
TL;DR: The authors' results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period, however, the fraction of stored methane emitted to the sky during overturn may be substantially larger and the fractionof stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane.
Abstract: Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction o...

Journal ArticleDOI
TL;DR: The hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters, is supported, which has implications for ecosystem changes such as drought and increased nutrient loading.
Abstract: Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr(-1) ; over 6400 km(2) ) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

Journal ArticleDOI
TL;DR: In this paper, the authors used the eddy covariance method over a Swedish lake for an extended period and observed a diurnal cycle in both FCH4 and pCH4a with high values during nighttime and low values during day.
Abstract: Air-lake methane flux (FCH4) and partial pressure of methane in the atmosphere (pCH4a) were measured using the eddy covariance method over a Swedish lake for an extended period. The measurements show a diurnal cycle in both FCH4 and pCH4a with high values during nighttime (FCH4 ≈ 300 nmol m−2 s−1, pCH4a ≈ 2.5 µatm) and low values during day (FCH4 ≈ 0 nmol m−2 s−1, pCH4a ≈ 2.0 µatm) for a large part of the data set. This diurnal cycle persist in all open water season; however, the magnitude of the diurnal cycle is largest in the spring months. Estimations of buoyancy in the water show that high nighttime fluxes coincide with convective periods. Our interpretation of these results is that the convective mixing enhances the diffusive flux, in analogy to previous studies. We also suggest that the convection may bring methane-rich water from the bottom to the surface and trigger bubble release from the sediment. A diurnal cycle is not observed for all convective occasions, indicating that the presence of convection is not sufficient for enhanced nighttime flux; other factors are also necessary. The observed diurnal cycle of pCH4a is explained with the variation of FCH4 and a changing internal boundary layer above the lake. The presence of a diurnal cycle of FCH4 stresses the importance of making long-term continuous flux measurements. A lack of FCH4 measurements during night may significantly bias estimations of total CH4 emissions from lakes to the atmosphere.

Journal ArticleDOI
TL;DR: Kindler et al. as discussed by the authors showed that during the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard-Oeschger (DO) events.
Abstract: . During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard–Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from the Preboreal Holocene (PB) back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the local Greenland NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core (Kindler et al., 2014). We find the ratio to oscillate between 5 parts per billion (ppb) per °C and 18 ppb °C−1 with the approximate frequency of the precessional cycle. A remarkably high ratio of 25.5 ppb °C−1 is reached during the transition from the Younger Dryas (YD) to the PB. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for DO events 5, 9, 10, 11, 13, 15, 19, and 20. These events generally have small methane increase rates and we hypothesize that the lag is caused by pronounced northward displacement of the source regions from stadial to interstadial. We further show that the relative interpolar concentration difference (rIPD) of methane is about 4.5% for the stadials between DO events 18 and 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum. The rIPD of methane remains relatively stable throughout the full last glacial, with a tendency for elevated values during interstadial compared to stadial periods.

Journal ArticleDOI
TL;DR: NG industry representative FER is estimated using global atmospheric methane and ethane measurements over three decades, and literature ranges of tracer gas atmospheric lifetimes, non-NG source estimates, and fossil fuel fugitive gas hydrocarbon compositions suggest an upper bound global average FER of 5% during 2006-2011, and a most likely FE of 2-4% since 2000, trending downward.
Abstract: The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)—the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere—between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006–2011, and a most likely FER of 2–4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, w...

Journal ArticleDOI
TL;DR: In this article, the authors present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma.

Journal ArticleDOI
TL;DR: It was found that nighttime methane concentrations do better reflect emissions obtained from a spatially explicit methane emission inventory and allowed the investigation of inconsistencies in this emission inventory.

Journal ArticleDOI
TL;DR: In this article, a clipping experiment examined the changes in CH4 emissions from a temperate peatland after removing all aboveground C rostrata biomass during a 4-year period from 2008 to 2011.
Abstract: [1] Peatlands are a large natural source of atmospheric methane (CH4), and the sedgeCarex rostrata plays a critical role in the production, oxidation, and transport of CH4 in these systems This 4 year clipping experiment examined the changes in CH4 emissions from a temperate peatland after removing all aboveground C rostrata biomass Methane fluxes, dissolved CH4, and environmental variables were measured during spring, summer, and fall from 2008 to 2011 Clipping and removing the C rostrata leaves and stems caused an immediate decrease in CH4 emissions that persisted over 4 years of this study There was a strong seasonal trend in CH4 flux, with the largest treatment effects occurring during the fall months when the sedges were senescing As expected, there was a strong positive correlation between C rostrata green-leaf area and CH4 flux, implying that the presence of C rostrata increases CH4 emissions from this peatland Large interannual variability in vegetation distribution and biomass, water table depth, and temperature was observed in this study, indicating the importance of multiyear studies for understanding the interactions among these factors to determine how they could be incorporated into biogeochemical models to predict CH4 emissions under changing environmental conditions

Journal ArticleDOI
TL;DR: Hydrological change in peat sediments from the Tibetan Plateau is linked to changes in archaeal diether concentrations and diploptene δ13C values as tracers for methanogenesis and methanotrophy, respectively, suggesting a regionally widespread impact on methane emissions during the mid-Holocene.
Abstract: Atmospheric methane concentrations decreased during the early to middle Holocene; however, the governing mechanisms remain controversial. Although it has been suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is lacking. Here we report a new independent approach, linking hydrological change in peat sediments from the Tibetan Plateau to changes in archaeal diether concentrations and diploptene δ(13)C values as tracers for methanogenesis and methanotrophy, respectively. A minimum in inferred methanogenesis occurred during the mid-Holocene, which, locally, corresponds with the driest conditions of the Holocene, reflecting a minimum in Asian monsoon precipitation. The close coupling between precipitation and methanogenesis is validated by climate simulations, which also suggest a regionally widespread impact. Importantly, the minimum in methanogenesis is associated with a maximum in methanotrophy. Therefore, methane emissions in the Tibetan Plateau region were apparently lower during the mid-Holocene and partially controlled by interactions of large-scale atmospheric circulation.

Journal ArticleDOI
TL;DR: In this article, the authors studied the impact of a change in the observing system on the methane tropospheric analysis, which is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of thermal and near-infrared Sensor for carbon Observation (TANSO) products in the monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode system.
Abstract: . The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Meteorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly positive but more pronounced and effective when combined with version v.2.0 of the TANSO products. The resulting analysis globally underestimates the column-averaged dry-air mole fractions of methane (xCH4) just under 1 ppb on average compared to the TCCON data, whereas in the tropics it overestimates xCH4 by about 3 ppb. The random error is estimated to be less than 7 ppb when compared to TCCON data.

Journal ArticleDOI
TL;DR: Overall, the results reported here showed that methane oxidation at both low and high methane concentrations occurs in high Arctic soils and revealed that different groups of atmospheric MOB inhabit these soils.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the response of relict Arctic submarine permafrost and gas hydrate deposits to warming and make predictions of methane gas flux to the water column using a 2-D multiphase fluid flow model.
Abstract: We investigate the response of relict Arctic submarine permafrost and gas hydrate deposits to warming and make predictions of methane gas flux to the water column using a 2-D multiphase fluid flow model. Exposure of the Arctic shelf during the last glacial cycle formed a thick layer of permafrost, protecting hydrate deposits below. However, talik formation below paleo-river channels creates permeable pathways for gas migration from depth. An estimate of the maximum gas flux at the present time for conditions at the East Siberian Arctic Seas is 0.2047 kg yr−1 m−2, which produces a methane concentration of 142 nM in the overlying water column, consistent with several field observations. For conditions at the North American Beaufort Sea, the maximum gas flux at the present time is 0.1885 kg yr−1 m−2, which produces a methane concentration of 78 nM in the overlying water column. Shallow sediments are charged with residual methane gas after venting events. Sustained submergence into the future should increase gas venting rate roughly exponentially as sediments continue to warm. Studying permafrost-associated gas hydrate reservoirs will allow us to better understand the Arctic's contribution to the global methane budget and global warming.

Journal ArticleDOI
TL;DR: In this article, the authors used atmospheric methane observations over North America from 2007 to 2008 and a geostatistical inverse model to improve understanding of Canadian methane fluxes and associated biogeochemical models.
Abstract: Wetlands comprise the single largest global source of atmospheric methane, but current flux estimates disagree in both magnitude and distribution at the continental scale. This study uses atmospheric methane observations over North America from 2007 to 2008 and a geostatistical inverse model to improve understanding of Canadian methane fluxes and associated biogeochemical models. The results bridge an existing gap between traditional top-down, inversion studies, which typically emphasize total emission budgets, and biogeochemical models, which usually emphasize environmental processes. The conclusions of this study are threefold. First, the most complete process-based methane models do not always describe available atmospheric methane observations better than simple models. In this study, a relatively simple model of wetland distribution, soil moisture, and soil temperature outperformed more complex model formulations. Second, we find that wetland methane fluxes have a broader spatial distribution across western Canada and into the northern U.S. than represented in existing flux models. Finally, we calculate total methane budgets for Canada and for the Hudson Bay Lowlands, a large wetland region (50-60 degrees N, 75-96 degrees W). Over these lowlands, we find total methane fluxes of 1.80.24 Tg C yr(-1), a number in the midrange of previous estimates. Our total Canadian methane budget of 16.01.2 Tg C yr(-1) is larger than existing inventories, primarily due to high anthropogenic emissions in Alberta. However, methane observations are sparse in western Canada, and additional measurements over Alberta will constrain anthropogenic sources in that province with greater confidence.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a "Methane remote Lidar mission" which uses the surface backscatter to measure the total atmospheric methane column at precisions of 1.2, 1.7, and 2.1% over land, water, and snow or ice surfaces.
Abstract: Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a “Methane Remote Lidar Mission” was proposed by Deutsches Zentrum fur Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results show that a lidar with an average optical power of 0.45 W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform (506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

Journal ArticleDOI
TL;DR: In this paper, the authors measured methane emissions from six Mexican lakes, covering a broad range of organic inputs, trophic states, and climatic conditions, ranging from 5 to 5,000mg CH4m−m−2−day−1.
Abstract: The literature concerning methane (CH4) emissions from temperate and boreal lakes is extensive, but emissions from tropical and subtropical lakes have been less documented. In particular, methane emissions from Mexican lakes, which are often polluted by anthropogenic carbon and nutrient inputs, have not been reported previously. In this work, methane emissions from six Mexican lakes were measured, covering a broad range of organic inputs, trophic states, and climatic conditions. Methane emissions ranged from 5 to 5,000 mg CH4 m−2 day−1. Water samples from several depths in each lake were analyzed for correlation between water quality indicators and methane emissions. Trophic state and water quality indexes were most strongly correlated with methane fluxes. The global methane flux from Mexican freshwater lakes was estimated to be approximately 1.3 Tg CH4 year−1, which is about 20% of methane and 4.4% of total national greenhouse gas emissions. Data for untreated wastewater releases to the environment gave an emission factor of 0.19 kg CH4 kg−1 of Biochemical Oxygen Demand, which is superior to that previously estimated by the IPCC for lake discharges. Thus, the large volume of untreated wastewater in Mexico implies higher methane emission than previously estimated.

Journal ArticleDOI
TL;DR: In this article, the UK community land surface model (JULES, the Joint UK Land Earth Simulator) is compared with atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite.
Abstract: . Wetlands are a major emission source of methane (CH4) globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a) from an offline run driven with Climatic Research Unit–National Centers for Environmental Prediction (CRU-NCEP) meteorological data and (b) from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS) remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007) is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr−1) and lower emissions in other regions (by up to 10 Tg CH4 yr−1) compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2), we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991). Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb). Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES-derived wetland fraction improves the representation of the wetland emissions in JULES and gives a good description of the seasonality observed at surface sites influenced by wetlands, especially at high latitudes. We find that the annual cycles observed in the SCIAMACHY measurements and at many of the surface sites influenced by non-wetland sources cannot be reproduced in these HadGEM2 runs. This suggests that the emissions over certain regions (e.g. India and China) are possibly too high and/or the monthly emission patterns for specific sectors are incorrect. The comparisons presented in this paper show that the performance of the JULES wetland scheme is comparable to that of other process-based land surface models. We identify areas for improvement in this and the atmospheric chemistry components of the HadGEM Earth System model. The Earth Observation data sets used here will be of continued value in future evaluations of JULES and the HadGEM family of models.

Journal ArticleDOI
29 Jul 2014
TL;DR: In this article, the key chemical reactions and processes affecting ozone and methane are presented, and it is shown that climate-chemistry interactions have a significant impact on the two compounds.
Abstract: Ozone and methane are chemically active climate-forcing agents affected by climate-chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O), NOx compounds (NO, NO2), CO, hydrogen radicals (OH, HO2), volatile organic compounds (VOC) and chlorine (Cl, ClO) and bromine (Br, BrO). Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills).Methane is broken down by the hydroxyl radical (OH). OH is significantly affected by methane emissions, defined by the feedback factor,

Journal ArticleDOI
15 Nov 2014-Icarus
TL;DR: In this paper, the authors verified the existence of Subsidence-Induced Methane Clouds (SIMCs) over Titan's winter pole by retrieving the stratospheric methane mole fraction at 70°N from the strength of the far infrared methane pure rotation lines observed by CIRS and by assuming the RSS-derived thermal profile at 74.1°N.