scispace - formally typeset
Search or ask a question
Topic

Atmospheric methane

About: Atmospheric methane is a research topic. Over the lifetime, 2034 publications have been published within this topic receiving 119616 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a study from the Mittivakkat Gletscher forefield in Southeast Greenland with special focus on methanotrophy in relation to exposure time to the atmosphere is presented.
Abstract: Increasing global annual temperature leads to massive loss of ice cover worldwide. Consequently, glaciers retreat and ice-covered areas become exposed. We report on a study from the Mittivakkat Gletscher forefield in Southeast Greenland with special focus on methanotrophy in relation to exposure time to the atmosphere. The Mittivakkat Gletscher has receded since the end of the Little Ice Age (LIA; about AD 1850) and has left behind a series of deposits of decreasing age concurrently with its recession. Soil samples from this chronosequence were examined in order to elucidate main soil variables, as well as the activity and community structure of methanotrophs, a group of microorganisms involved in regulation of atmospheric methane. Soil variables revealed poor soil development, and incubation experiments showed methane consumption rates of 2.14 nmol CH4 day−1 gsoil−1 at 22 °C and 1.24 nmol CH4 day−1 gsoil−1 at 10 °C in the LIA terminal moraine. Methane consumption was not detected in younger samp...

44 citations

Journal ArticleDOI
01 Jun 2007-Energy
TL;DR: In this paper, the authors proposed simple mitigation and recovery procedures to substantially reduce atmospheric methane emissions from hydroelectric reservoirs, aiming at transforming existing methane stocks of tropical reservoirs into a clean, renewable energy source.

44 citations

Journal ArticleDOI
TL;DR: Simulating the observed LGM CH4 concentration requires a 46–49% reduction in sources, indicating that the observed amplitude cannot be reconciled, and highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources.
Abstract: Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480 p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources.

44 citations

Journal ArticleDOI
TL;DR: The results indicate that compost harbours a diverse community of thermophilic methanogens, with changing composition during the maturation process, presumably due to altered pile conditions, and may act as a potential carrier for thermophiles in temperate soils because it is widely used as a soil amendment.

44 citations

Journal ArticleDOI
01 May 2011-Ecology
TL;DR: Modulation of methane emission by animal-plant-microbe interactions deserves further attention considering the increasing bird populations and changes in wetland vegetation as a consequence of changing land use and climate change.
Abstract: Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on shoots of wetland plants can modulate methane emission from wetlands. Diffusive methane emission was monitored inside and outside bird exclosures, using static flux chambers placed over whole vegetation and over single shoots. Both methods showed significantly higher methane release from grazed vegetation. Surface-based diffusive methane emission from grazed plots was up to five times higher compared to exclosures. The absence of an effect on methane-cycling microbial processes indicated that this modulating effect acts on the gas transport by the plants. Modulation of methane emission by animal-plant-microbe interactions deserves further attention considering the increasing bird populations and changes in wetland vegetation as a consequence of changing land use and climate change.

44 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
86% related
Aerosol
33.8K papers, 1.1M citations
82% related
Global warming
36.6K papers, 1.6M citations
81% related
Climate change
99.2K papers, 3.5M citations
80% related
Ecosystem
25.4K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022153
202175
202077
201974
201872