scispace - formally typeset
Search or ask a question
Topic

Atmospheric methane

About: Atmospheric methane is a research topic. Over the lifetime, 2034 publications have been published within this topic receiving 119616 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that microbial (community diversity and function) response to land use change is stable over time, providing support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles.
Abstract: Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites This change in function was linked to a niche-specific separation of microbial communities (methanotrophs) The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles

82 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the clues available from isotopic ratios (12 C/13 C and D/H) in Titan's methane as to the past atmosphere history of this species.
Abstract: The existence of methane in Titan’s atmosphere (∼ 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of ∼20 Myr. In this paper, we examine the clues available from isotopic ratios ( 12 C/ 13 C and D/H) in Titan’s methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: 13 CH4, 12 CH3D, and 13 CH3D. From these we compute estimates of 12 C/ 13 C = 86.5 ± 8.2 and D/H = (1.59 ± 0.33) × 10 −4 , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan’s methane: CH4 +C 2H → CH3 +C 2H2. Using these new measurements and predictions we proceed to model the time evolution of 12 C/ 13 C and D/H in Titan’s methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day 12 C/ 13 C implies that the CH4 entered the atmosphere 60–1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently—most likely less than 10 Myr ago—if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

82 citations

Journal ArticleDOI
TL;DR: In this article, the authors used measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica.
Abstract: Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. We show that sub-ice-sheet methane is produced through the biological reduction of CO2 using H2. This methane pool is subsequently consumed by aerobic, bacterial methane oxidation at the SLW sediment–water interface. Bacterial oxidation consumes >99% of the methane and represents a significant methane sink, and source of biomass carbon and metabolic energy to the surficial SLW sediments. We conclude that aerobic methanotrophy may mitigate the release of methane to the atmosphere upon subglacial water drainage to ice sheet margins and during periods of deglaciation. Subglacial lakes contain active microbial ecosystems capable of cycling methane. In a subglacial lake in West Antarctica, methane that is produced is subsequently consumed, limiting the potential for methane emissions during lake drainage.

82 citations

Journal ArticleDOI
TL;DR: In this article, a high-precision, high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core covering 1000-1800 C.E. is presented.
Abstract: [1] We present a new high-precision, high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core covering 1000–1800 C.E., a time period known as the late preindustrial Holocene (LPIH). The results are consistent with previous measurements from the Law Dome ice core, the only other high-resolution record of methane for this time period, and confirm most of the observed variability. Multidecadal variability in methane concentrations throughout the LPIH is weakly correlated or uncorrelated with reconstructions of temperature and precipitation from a variety of geographic regions. Correlations with temperature are dominated by changes in Northern Hemisphere high latitude temperatures between 1400 and 1600 C.E. during the onset of the Little Ice Age. Times of war and plague when large population losses could have reduced anthropogenic emissions are coincident with short periods of decreasing global methane concentrations.

82 citations

Journal ArticleDOI
TL;DR: There is strong evidence that methane emissions from fossil fuel sectors were approximately constant in the 1980s and 1990s but increased significantly between 2000 and 2009, and this finding challenges recent conclusions based on atmospheric ethane that fugitive fossil fuel emissions fell during much of this period.
Abstract: Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 ((13)C/(12)C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y(-1) CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.

82 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
86% related
Aerosol
33.8K papers, 1.1M citations
82% related
Global warming
36.6K papers, 1.6M citations
81% related
Climate change
99.2K papers, 3.5M citations
80% related
Ecosystem
25.4K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022153
202175
202077
201974
201872