scispace - formally typeset
Search or ask a question
Topic

Atmospheric methane

About: Atmospheric methane is a research topic. Over the lifetime, 2034 publications have been published within this topic receiving 119616 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The MOZART-2 global tropospheric chemistry model qualitatively captures the observed CH4 trend (increasing in the early 1990s and then leveling off) with constant emissions as mentioned in this paper.
Abstract: [1] Over the past century, atmospheric methane (CH4) rose dramatically before leveling off in the late 1990s. The processes controlling this trend are poorly understood, limiting confidence in projections of future CH4. The MOZART-2 global tropospheric chemistry model qualitatively captures the observed CH4 trend (increasing in the early 1990s and then leveling off) with constant emissions. From 1991–1995 to 2000–2004, the CH4 lifetime versus tropospheric OH decreases by 1.6%, reflecting increases in OH and temperature. The rise in OH stems from an increase in lightning NOx as parameterized in the model. A simulation including annually varying anthropogenic and wetland CH4 emissions, as well as the changes in meteorology, best reproduces the observed CH4 distribution, trend, and seasonal cycles. Projections of future CH4 abundances should consider climate-driven changes in CH4 sources and sinks.

74 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the relationship between changes in southern European tree populations and atmospheric methane concentrations in previous interglacials to evaluate the natural vs. anthropogenic contribution to Holocene methane emissions and assess the two alignment schemes.
Abstract: . Marine Isotope Stage (MIS) 11 has been considered a potential analogue for the Holocene and its future evolution. However, a dichotomy has emerged over the precise chronological alignment of the two intervals, with one solution favouring a synchronization of the precession signal and another of the obliquity signal. The two schemes lead to different implications over the natural length of the current interglacial and the underlying causes of the evolution of greenhouse gas concentrations. Here, the close coupling observed between changes in southern European tree populations and atmospheric methane concentrations in previous interglacials is used to evaluate the natural vs. anthropogenic contribution to Holocene methane emissions and assess the two alignment schemes. Comparison of the vegetation trends in MIS 1 and MIS 11 favours a precessional alignment, which would suggest that the Holocene is nearing the end of its natural course. This, combined with the divergence between methane concentrations and temperate tree populations after 5 kyr BP, provides some support for the notion that the Holocene methane trend may be anomalous compared to previous interglacials. In contrast, comparison of MIS 1 with MIS 19, which may represent a closer astronomical analogue than MIS 11, leads to substantially different conclusions on the projected natural duration of the current interglacial and the extent of the anthropogenic contribution to the Holocene methane budget. As answers vary with the choice of analogue, resolution of these issues using past interglacials remains elusive.

74 citations

Journal ArticleDOI
TL;DR: In this paper, a mixed hardwood forest with a maximum potential atmospheric methane consumption at 4 to 6 cm depth was investigated, and a linear relationship between gas diffusivity and the logarithm to the volumetric soil-water content was found.
Abstract: A mixed hardwood forest with a maximum potential atmospheric methane consumption at 4 to 6 cm depth was investigated. Vertical variation of soil-water content, gas diffusivity and atmospheric methane uptake was measured with high spatial resolution in intact soil cores (2-5 cm depth intervals). Gas diffusivity increased rapidly with decreasing soil-water potential and a linear relationship between gas diffusivity, and the logarithm to the volumetric soil-water content was found (R 2 ≥ 0.98). Using this relationship in a simple, dynamic diffusion-reaction model, the vertical methane concentration profiles in intact soil cores were simulated. Only diffusion of methane in the soil air and variable methane consumption with depth was considered in the model. An excellent agreement between simulated and measured methane profiles indicated that a main control of methane consumption in non-waterlogged soils is methane diffusion in the soil air. Simulated methane uptake rates, calculated by summing up the methane oxidation at each 1-cm-depth interval, agreed well with measured methane fluxes into the soil cores. Model sensitivity analyses showed an accurate estimation of the effective gas diffusion coefficient at and above the zone of maximum methane consumption to be the most critical parameter for a realistic simulation of methane concentration profiles and total uptake rates.

74 citations

Journal ArticleDOI
TL;DR: In this article, the backscatter strength of a multibeam system was integrated with single-beam data to estimate the amount of seeps/m2 for different back-scatter intensities, resulting in 2709 vents in total.
Abstract: Bubble transport of methane from shallow seep sites in the Black Sea west of the Crimea Peninsula between 70 and 112 m water depth has been studied by extrapolation of results gained through different hydroacoustic methods and direct sampling. Ship-based hydroacoustic echo sounders can locate bubble releasing seep sites very precisely and facilitate their correlation with geological or other features at the seafloor. Here, the backscatter strength of a multibeam system was integrated with single-beam data to estimate the amount of seeps/m2 for different backscatter intensities, resulting in 2709 vents in total. Direct flux measurements by submersible revealed methane fluxes from individual vents of 0.32–0.85 l/min or 14.5–37.8 mmol/min at ambient pressure and temperature conditions. A conservative estimate of 30 mmol/min per site was used to estimate the flux into the water to be 1219–1355 mmol/s. The flux to the atmosphere was calculated by applying a bubble dissolution model taking release depth, temperature, gas composition, and bubble size spectra into account. The flux into the atmosphere (3930–4533 mol/d) or into the mixed layer (6186–6899 mol/d) from the 21.8 km2 large study area is three times higher than independently measured fluxes of dissolved methane for the same area using geochemical methods (1030–2495 mol/d). The amount of methane dissolving in the mixed layer is 2256–2366 mol/d. This close match shows that the hydroacoustic approach for extrapolating the number of seeps/m2 and the applied bubble dissolution model are suitable to extrapolate methane fluxes over larger areas.

74 citations

Journal ArticleDOI
01 Nov 2002
TL;DR: In this paper, the authors provided an estimation of the atmospheric methane flux from Bulgarian Black Sea continental shelf using seismic and echo-sounder data collected by the Bulgarian Institute of Oceanology.
Abstract: A regional estimation of the contribution to atmospheric methane by natural gas seepages on the UK continental shelf was undertaken by Judd et al. (Mar. Geol. 137(1/2) (1997) 165). This paper is the second in the series, and provides an estimation of the atmospheric methane flux from Bulgarian Black Sea continental shelf. Potential gas source rocks include Holocene gas-charged sediments, Quaternary peats and sapropels, and deep-lying Palaeocene and Neogene clays, Cretaceous coals, and other sediments of late Jurassic to early Cretaceous age. These cover almost the whole continental shelf and slope and, together with irregularly developed seal rocks and widespread active and conducting faults, provide good conditions for upward gas migration. A total of 5100 line kilometers of shallow seismic (boomer) and echo-sounder records acquired during the Institute of Oceanology's regional surveys, and several detailed side-scan sonar lines, have been reviewed for water column targets. Four hundred and eighty-two targets were assigned as gas seepage plumes. It is estimated that a total of 19,735 individual seeps exists on the open shelf. The number of seeps in coastal waters was estimated to be 6020; this is based on available public-domain data, specific research, and results of a specially made questionnaire which was distributed to a range of “seamen”. More than 150 measurements of the seabed flux rates were made in the “Golden sands” and “Zelenka” seepage areas between 1976 and 1991. Indirect estimations of flux rates from video and photo materials, and a review of published data have also been undertaken. Based on these data, three types of seepages were identified as the most representative of Bulgarian coastal waters. These have flux rates of 0.4, 1.8, and 3.5 l/min. The contribution to atmospheric methane is calculated by multiplying the flux rates with the number of seepages, and entering corrections for methane concentration and the survival of gas bubbles as they ascend through seawater of the corresponding water depth. The estimation indicates that between 45,100,000 (0.03 Tg) and 210,650,000 m3 (0.15 Tg) methane yr−1 come from an area of 12,100 km2.

74 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
86% related
Aerosol
33.8K papers, 1.1M citations
82% related
Global warming
36.6K papers, 1.6M citations
81% related
Climate change
99.2K papers, 3.5M citations
80% related
Ecosystem
25.4K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022153
202175
202077
201974
201872