scispace - formally typeset
Search or ask a question
Topic

Atom-transfer radical-polymerization

About: Atom-transfer radical-polymerization is a research topic. Over the lifetime, 7925 publications have been published within this topic receiving 292187 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current status and future perspectives in atom transfer radical polymerization (ATRP) are presented in this paper, with a special emphasis on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP.
Abstract: Current status and future perspectives in atom transfer radical polymerization (ATRP) are presented. Special emphasis is placed on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP. New hybrid materials based on organic/inorganic systems and natural/synthetic polymers are presented. Some current and forthcoming applications are described.

2,188 citations

Journal ArticleDOI
TL;DR: An extension of ATRA to atom transfer radical addition, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization as mentioned in this paper, using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x, e.g., CuX/2,2'-bipyridine, as a catalyst.
Abstract: An extension of atom transfer radical addition, ATRA, to atom transfer radical polymerization, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization. By using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x , e.g., CuX/2,2'-bipyridine, as a catalyst, ATRP of vinyl monomers such as styrenes and (meth)acrylates proceeded in a living fashion, yielding polymers with degrees of polymerization predetermined by Δ[M]/[I] 0 up to M n ≃ 10 5 and low polydispersities, 1.1 < M w /M n < 1.5. The participation of free radical intermediates was supported by analysis of the end groups and the stereochemistry of the polymerization. The general principle and the mechanism of ATRP are elucidated. Various factors affecting the ATRP process are discussed.

1,628 citations

BookDOI
26 Jul 2002
TL;DR: Krzysztof Matyjaszewski and Thomas P. Davis as discussed by the authors discussed the fundamental concepts and history of living radical polymers and their application in industrial applications and processes.
Abstract: Introduction (Krzysztof Matyjaszewski and Thomas P. Davis). Contributors. 1. Theory of Radical Reactions (Johan P. A. Heuts). 2. Small Radical Chemistry (Martin Newcomb). 3. General Chemistry of Radical Polymerization (Bunichiro Yamada and Per B. Zetterlund). 4. The Kinetics of Free Radical Polymerization (Christopher Barner-Kowollik, Philipp Vana, and Thomas P. Davis). 5. Copolymerization Kinetics (Michelle L. Coote and Thomas P. Davis). 6. Heterogeneous Systems (Alex M. van Herk and Michael Monteiro). 7. Industrial Applications and Processes (Michael Cunningham and Robin Hutchinson). 8. General Concepts and History of Living Radical Polymerization (Krzysztof Matyjaszewski). 9. Kinetics of Living Radical Polymerization (Takeshi Fukuda, Atsushi Goto, and Yoshinobu Tsujii). 10. Nitroxide Mediated Living Radical Polymerization (Craig J. Hawker). 11. Fundamentals of Atom Transfer Radical Polymerization (Krzysztof Matyjaszewski and Jianhui Xia). 12. Control of Free Radical Polymerization by Chain Transfer Methods (John Chiefari and Ezio Rizzardo). 13. Control of Stereochemistry of Polymers in Radical Polymerization (Akikazu Matsumoto). 14. Macromolecular Engineering by Controlled Radical Polymerization (Yves Gnanou and Daniel Taton). 15. Experimental Procedures and Techniques for Radical Polymerization (Stefan A. F. Bon and David M. Haddleton). 16. Future Outlook and Perspectives (Krzysztof Matyjaszewski and Thomas P. Davis). Index.

1,407 citations


Network Information
Related Topics (5)
Polymerization
147.9K papers, 2.7M citations
95% related
Polymer
131.4K papers, 2.6M citations
94% related
Nanocomposite
71.3K papers, 1.9M citations
89% related
Phase (matter)
115.6K papers, 2.1M citations
86% related
Ionic liquid
57.2K papers, 1.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022304
2021224
2020274
2019306
2018367