scispace - formally typeset
Topic

Atomic coherence

About: Atomic coherence is a(n) research topic. Over the lifetime, 877 publication(s) have been published within this topic receiving 29395 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

3,732 citations

Journal ArticleDOI
18 Feb 1999-Nature
TL;DR: In this paper, an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum, is presented.
Abstract: Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a ‘coupling’ laser beam propagating at a right angle to the pulsed ‘probe’ beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose–Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17?m?s−1) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18?cm2?W−1 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.

3,254 citations

Journal ArticleDOI
TL;DR: Electromagnetic induced transparency is a technique for eliminating the effect of a medium on a propagating beam of electromagnetic radiation EIT may also be used, but under more limited conditions, to eliminate optical self-focusing and defocusing and to improve the transmission of laser beams through inhomogeneous refracting gases and metal vapors, as figure 1 illustrates.
Abstract: Electromagnetically induced transparency is a technique for eliminating the effect of a medium on a propagating beam of electromagnetic radiation EIT may also be used, but under more limited conditions, to eliminate optical self‐focusing and defocusing and to improve the transmission of laser beams through inhomogeneous refracting gases and metal vapors, as figure 1 illustrates The technique may be used to create large populations of coherently driven uniformly phased atoms, thereby making possible new types of optoelectronic devices

3,115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first demonstration of a technique by which an optically thick medium may be rendered transparent by applying a temporally smooth coupling laser between a bound state of an atom and the upper state of the transition which is to be made transparent.
Abstract: We report the first demonstration of a technique by which an optically thick medium may be rendered transparent. The transparency results from a destructive interference of two dressed states which are created by applying a temporally smooth coupling laser between a bound state of an atom and the upper state of the transition which is to be made transparent. The transmittance of an autoionizing (ultraviolet) transition in Sr is changed from exp(-20) without a coupling laser present to exp(-1) in the presence of a coupling laser.

2,104 citations

Book ChapterDOI
TL;DR: In this article, the authors describe the coherent population trapping in laser spectroscopy and discuss the basic properties of an atomic system prepared with coherent population-trapping superposition of states.
Abstract: Publisher Summary This chapter describes the coherent population trapping in laser spectroscopy. Coherent population trapping may be also described as the pumping of the atomic system in a particular state, the coherent superposition of the atomic states, which is a nonabsorbing state. The exciting radiation creates an atomic coherence, such that the atom's evolution is prepared exactly out of phase with the incoming radiation and no absorption takes place. The chapter discusses the basic properties of an atomic system prepared with the coherent population-trapping superposition of states and outlines experimental observations concerned with the establishment of coherent trapping in different discrete systems. The chapter also discusses the theoretical and experimental aspects of trapping that involve states of the continuum and reviews the theoretical and experimental features associated with coherent population trapping in laser cooling, adiabatic transfer, lasing without inversion, pulse matching, and photon statistics. The theoretical aspect of coherent population trapping created by spontaneous emission is also discussed in the chapter.

1,005 citations

Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
87% related
Quantum entanglement
39.5K papers, 1M citations
86% related
Open quantum system
20.4K papers, 924.6K citations
85% related
Plasmon
32.5K papers, 983.9K citations
81% related
Quantum
60K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202121
202024
201923
201825
201724
201626