scispace - formally typeset
Search or ask a question
Topic

Atomic layer deposition

About: Atomic layer deposition is a research topic. Over the lifetime, 19821 publications have been published within this topic receiving 477332 citations. The topic is also known as: ALD.


Papers
More filters
Patent
31 May 2001
TL;DR: In this article, a first layer comprising a first element that is chemisorbed to a surface of a substrate, by exposing the surface to a first source gas having molecules therein that comprise the first element and a halogen.
Abstract: Methods of forming thin films include forming a first layer comprising a first element that is chemisorbed to a surface of a substrate, by exposing the surface to a first source gas having molecules therein that comprise the first element and a halogen. A step is then performed to expose the first layer to an activated hydrogen gas so that halogens associated with the first layer become bound to hydrogen provided by the activated hydrogen gas. The first layer may then be converted to a thin film comprising the first element and a second element, by exposing a surface of the first layer to a second source gas having molecules therein that comprise the second element.

447 citations

Journal ArticleDOI
TL;DR: Schwartz et al. as mentioned in this paper reviewed various chemical aspects of different approaches, including sol-gel, hybrid, and metallo-organic decomposition (MOD) routes, which all have been successfully applied for the deposition of this class of materials.

445 citations

Journal ArticleDOI
TL;DR: In this article, an ordered organic−inorganic solar cell architecture based on ZnO−TiO2 core−shell nanorod arrays encased in the hole-conducting polymer P3HT was evaluated.
Abstract: We evaluate an ordered organic−inorganic solar cell architecture based on ZnO−TiO2 core−shell nanorod arrays encased in the hole-conducting polymer P3HT. Thin shells of TiO2 grown on the ZnO nanorods by atomic layer deposition significantly increase the voltage and fill factor relative to devices without shells. We find that the core−shell cells must be exposed to air to reproducibly attain efficiencies higher than 0.05%. Cells stored in air for 1 month are 0.29% efficient.

445 citations

Journal ArticleDOI
TL;DR: In this paper, surface recombination velocities as low as 10 cm/s have been obtained by treated atomic layer deposition (ALD) of Al 2 O 3 layers on p-type CZ silicon wafers.

441 citations

Journal ArticleDOI
TL;DR: In this paper, an atomic layer deposition allowed uniform deposition of smooth nanostructured vanadium oxide coatings on the surface of multi-walled carbon nanotube (MWCNT) electrodes, thus offering a novel route for the formation of binder-free flexible composite electrode fabric for supercapacitor applications with large thickness, controlled porosity, greatly improved electrical conductivity and cycle stability.
Abstract: Vanadium oxides may offer high pseudocapacitance but limited electrical conductivity and specific surface area. Atomic layer deposition allowed uniform deposition of smooth nanostructured vanadium oxide coatings on the surface of multi-walled carbon nanotube (MWCNT) electrodes, thus offering a novel route for the formation of binder-free flexible composite electrode fabric for supercapacitor applications with large thickness, controlled porosity, greatly improved electrical conductivity and cycle stability. Electrochemical measurements revealed stable performance of the selected MWCNT–vanadium oxide electrodes and remarkable capacitance of up to ∼1550 F g−1 per active mass of the vanadium oxide and up to ∼600 F g−1 per mass of the composite electrode, significantly exceeding specific capacitance of commercially used activated carbons (100–150 F g−1). Electrochemical performance of the oxide layers was found to strongly depend on the coating thickness.

434 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Silicon
196K papers, 3M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,013
20211,032
20201,269
20191,298
20181,322