scispace - formally typeset
Search or ask a question
Topic

Atomic layer deposition

About: Atomic layer deposition is a research topic. Over the lifetime, 19821 publications have been published within this topic receiving 477332 citations. The topic is also known as: ALD.


Papers
More filters
Journal ArticleDOI
TL;DR: The 3D TiO2 nano-network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia-borane, generating three equivalents of H2 .
Abstract: Three-dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self-assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt-TiO2 nano-network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom-level thickness precision. The 3D peptide-TiO2 nano-network was further decorated with highly monodisperse Pt nanoparticles by using ozone-assisted ALD. The 3D TiO2 nano-network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia-borane, generating three equivalents of H2 .

140 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid approach for the realization of in-free transparent conductive layers based on a composite of a mesh of silver nanowires (NWs) and a conductive metal-oxide is demonstrated.
Abstract: A hybrid approach for the realization of In-free transparent conductive layers based on a composite of a mesh of silver nanowires (NWs) and a conductive metal-oxide is demonstrated. As metal-oxide room-temperature-processed sol–gel SnOx or Al:ZnO prepared by low-temperature (100 °C) atomic layer deposition is used, respectively. In this concept, the metal-oxide is intended to fuse the wires together and also to “glue” them to the substrate. As a result, a low sheet resistance down to 5.2 Ω sq-1 is achieved with a concomitant average transmission of 87%. The adhesion of the NWs to the substrate is significantly improved and the resulting composites withstand adhesion tests without loss in conductivity. Owing to the low processing temperatures, this concept allows highly robust, highly conductive, and transparent coatings even on top of temperature sensitive objects, for example, polymer foils, organic devices. These Indium- and PEDOT:PSS-free hybrid layers are successfully implemented as transparent top-electrodes in efficient all-solution-processed semitransparent organic solar cells. It is obvious that this approach is not limited to organic solar cells but will generally be applicable in devices which require transparent electrodes.

140 citations

Patent
27 May 2004
TL;DR: In this article, the authors present an apparatus for generating a precursor for a semiconductor processing system (320), which includes a canister (300) having a sidewall (402), a top portion and a bottom portion.
Abstract: Embodiments of the present invention are directed to an apparatus for generating a precursor for a semiconductor processing system (320). The apparatus includes a canister (300) having a sidewall (402), a top portion and a bottom portion. The canister (300) defines an interior volume (438) having an upper region (418) and a lower region (434). In one embodiment, the apparatus further includes a heater (430) partially surrounding the canister (300). The heater (430) creates a temperature gradient between the upper region (418) and the lower region (434). Also claimed is a method of forming a barrier layer from purified pentakis (dimethylamido) tantalum, for example a tantalum nitride barrier layer by atomic layer deposition.

140 citations

Journal ArticleDOI
TL;DR: In this article, the formation of a thin conformal Li-ion permeable oxide layer on the sulfur-carbon composite electrode surface by rapid plasma enhanced atomic layer deposition (PEALD) was proposed to prevent polysulfide dissolution.
Abstract: One of the most challenging problems in the development of lithium–sulfur batteries is polysulfide dissolution, which leads to cell overcharge and low columbic efficiency. Here, we propose the formation of a thin conformal Li-ion permeable oxide layer on the sulfur-carbon composite electrode surface by rapid plasma enhanced atomic layer deposition (PEALD) in order to prevent this dissolution, while preserving electrical connectivity within the individual electrode particles. PEALD synthesis offers a fast deposition rate combined with a low operating temperature, which allows sulfur evaporation during deposition to be avoided. After PEALD of a thin layer of aluminium oxide on the surface of electrode composed of large (ca. 10 μm in diameter) S-infiltrated activated carbon fibers (S-ACF), significantly enhanced cycle life is observed, with a capacity in excess of 600 mA·h·g−1 after 300 charge–discharge cycles. Scanning electron microscopy (SEM) shows a significant amount of redeposited lithium sulfides on the external surface of regular S-ACF electrodes. However, the PEALD alumina-coated electrodes show no lithium sulfide deposits on the fiber surface. Energy dispersive spectroscopy (EDS) studies of the electrodes’ chemical composition further confirms that PEALD alumina coatings dramatically reduce S dissolution from the cathodes by confining the polysulfides inside the alumina barrier.

140 citations

Journal ArticleDOI
TL;DR: In this paper, high-capacitance bilayer dielectrics based on atomic-layer-deposited HfO2 and spin-cast epoxy are used with networks of single-walled carbon nanotubes (SWNTs) to enable lowvoltage, hysteresis-free, and high-performance thin-film transistors (TFTs) on silicon and flexible plastic substrates.
Abstract: High-capacitance bilayer dielectrics based on atomic-layer-deposited HfO2 and spin-cast epoxy are used with networks of single-walled carbon nanotubes (SWNTs) to enable low-voltage, hysteresis-free, and high-performance thin-film transistors (TFTs) on silicon and flexible plastic substrates. These HfO2–epoxy dielectrics exhibit excellent properties including mechanical flexibility, large capacitance (up to ca. 330 nF cm–2), and low leakage current (ca. 10–8 A cm–2); their low-temperature (ca. 150 °C) deposition makes them compatible with a range of plastic substrates. Analysis and measurements of these dielectrics as gate insulators in SWNT TFTs illustrate several attractive characteristics for this application. Their compatibility with polymers used for charge-transfer doping of SWNTs is also demonstrated through the fabrication of n-channel SWNT TFTs, low-voltage p–n diodes, and complementary logic gates.

140 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Silicon
196K papers, 3M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,013
20211,032
20201,269
20191,298
20181,322