scispace - formally typeset
Search or ask a question
Topic

Atomic layer deposition

About: Atomic layer deposition is a research topic. Over the lifetime, 19821 publications have been published within this topic receiving 477332 citations. The topic is also known as: ALD.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the zinc oxide (ZnO) thin films obtained by the atomic layer deposition (ALD) method using diethyl zinc and water precursors, which allowed them to lower deposition temperature to below 200°C.
Abstract: We report on the zinc oxide (ZnO) thin films obtained by the atomic layer deposition (ALD) method using diethyl zinc and water precursors, which allowed us to lower deposition temperature to below 200 °C. The so-obtained “as grown” ZnO layers are polycrystalline and show excitonic photoluminescence (PL) at room temperature, even if the deposition temperature was lowered down to 100 °C. Defect-related PL bands are of low intensity and are absent for layers grown at 140−200 °C. This is evidence that extremely low temperature growth by ALD can result in high quality ZnO thin films with inefficient nonradiative decay channels and with thermodynamically blocked self-compensation processes.

226 citations

Journal ArticleDOI
TL;DR: The power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer that exhibits an open-circuit voltage and efficiency of 3.97%, showing potential of over 7% efficiency.
Abstract: The power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.97%, showing potential of over 7% efficiency.

225 citations

PatentDOI
Yi Cui1, Jin Xie1
10 May 2018-ACS Nano
TL;DR: Atomic layer deposition is used to develop a LiAlF4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF3.
Abstract: A coated cathode material includes a cathode active material and an interfacial layer coating the cathode active material. The interfacial layer includes a lithium-containing fluoride which includes at least one additional metal different from lithium.

225 citations

Journal ArticleDOI
TL;DR: In this article, an Al2O3 film with a thickness of only 5 nm on a SiN PECVD film with thickness of 100 nm was shown to achieve a water vapor transmission rate of 5×10−5g/m2
Abstract: Thin films grown by Al2O3 atomic layer deposition (ALD) and SiN plasma-enhanced chemical vapor deposition (PECVD) have been tested as gas diffusion barriers either individually or as bilayers on polymer substrates. Single films of Al2O3 ALD with thicknesses of ≥10 nm had a water vapor transmission rate (WVTR) of ≤5×10−5 g/m2 day at 38 °C/85% relative humidity (RH), as measured by the Ca test. This WVTR value was limited by H2O permeability through the epoxy seal, as determined by the Ca test for the glass lid control. In comparison, SiN PECVD films with a thickness of 100 nm had a WVTR of ∼7×10−3 g/m2 day at 38 °C/85% RH. Significant improvements resulted when the SiN PECVD film was coated with an Al2O3 ALD film. An Al2O3 ALD film with a thickness of only 5 nm on a SiN PECVD film with a thickness of 100 nm reduced the WVTR from ∼7×10−3 to ≤5×10−5 g/m2 day at 38 °C/85% RH. The reduction in the permeability for Al2O3 ALD on the SiN PECVD films was attributed to either Al2O3 ALD sealing defects in the SiN PE...

224 citations

Patent
31 May 2001
TL;DR: In this article, a method of forming a thin film using atomic layer deposition (ALD) is provided. But, the method is not suitable for thin films and it requires the use of a single reaction space.
Abstract: The present invention provides a method of forming a thin film using atomic layer deposition (ALD). An ALD reactor having a single reaction space is provided. A batch of substrates is concurrently loaded into the single reaction space of the ALD reactor. Then, a gas containing reactants is introduced into the single reaction space, and a portion of the reactants is chemisorbed on top surfaces of the batch of substrates within the single reaction space. Non-chemically adsorbed reactants are then removed from the single reaction space. In accordance with one embodiment of the present invention, after introducing the gas containing reactants, non-chemically adsorbed reactants are diluted in the single reaction space to facilitate the removal of non-chemically adsorbed reactants.

224 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Silicon
196K papers, 3M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,013
20211,032
20201,269
20191,298
20181,322