scispace - formally typeset
Search or ask a question
Topic

Atomic layer deposition

About: Atomic layer deposition is a research topic. Over the lifetime, 19821 publications have been published within this topic receiving 477332 citations. The topic is also known as: ALD.


Papers
More filters
Patent
27 Feb 2003
TL;DR: In this article, a method for forming a nitrogen-containing oxide thin film by using plasma enhanced atomic layer deposition is provided, in which the nitrogen atoms can be incorporated in situ into the thin film, thereby increasing the breakdown voltage of the film.
Abstract: A method for forming a nitrogen-containing oxide thin film by using plasma enhanced atomic layer deposition is provided. In the method, the nitrogen-containing oxide thin film is deposited by supplying a metal source compound and oxygen gas into a reactor in a cyclic fashion with sequential alternating pulses of the metal source compound and the oxygen gas, wherein the oxygen gas is activated into plasma in synchronization of the pulsing thereof, and a nitrogen source gas is further sequentially pulsed into the reactor and activated into plasma over the substrate in synchronization with the pulsing thereof. According to the method, a dense nitrogen-containing oxide thin film can be deposited at a high rate, and a trace of nitrogen atoms can be incorporated in situ into the nitrogen-containing oxide thin film, thereby increasing the breakdown voltage of the film.

215 citations

Journal ArticleDOI
TL;DR: In this paper, an effective passivation technique for AlGaN/GaN high-electron-mobility transistors (HEMTs) was presented, which features an AlN thin film grown by plasma-enhanced atomic layer deposition (PEALD).
Abstract: An effective passivation technique for AlGaN/GaN high-electron-mobility transistors (HEMTs) is presented. This technique features an AlN thin film grown by plasma-enhanced atomic layer deposition (PEALD). With in situ remote plasma pretreatments prior to the AlN deposition, an atomically sharp interface between ALD-AlN and III-nitride has been obtained. Significant current collapse suppression and dynamic ON-resistance reduction are demonstrated in the ALD-AlN-passivated AlGaN/GaN HEMTs under high-drain-bias switching conditions.

215 citations

Journal ArticleDOI
TL;DR: It is demonstrated that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals and open the door to high-temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.
Abstract: Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

214 citations

Journal ArticleDOI
TL;DR: In this paper, an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiOtBu), H2O, trimethylphosphate (TMP), and plasma N2 (PN2) as precursors is presented.
Abstract: We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiOtBu), H2O, trimethylphosphate (TMP), and plasma N2 (PN2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen are polycrystalline. Finally, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.

213 citations

Journal ArticleDOI
TL;DR: In this paper, an optical method for determining the layer thicknesses in a multilayer thin film structure is developed and its performance in terms of accuracy and resolving power is characterized; the effects of layer thickness, their indices of refraction, light absorption, measurement wavelength range, thickness non-uniformity and unintentional transition layers are characterized.

213 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Silicon
196K papers, 3M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Oxide
213.4K papers, 3.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,013
20211,032
20201,269
20191,298
20181,322