scispace - formally typeset
Search or ask a question
Topic

Attenuation

About: Attenuation is a research topic. Over the lifetime, 30118 publications have been published within this topic receiving 473266 citations. The topic is also known as: extinction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the scaling law of earthquake source spectra between central California and western Japan was investigated and two extreme models of the wave medium that account for the observations on the coda were proposed.
Abstract: Coda waves from small local earthquakes are interpreted as backscattering waves from numerous heterogeneities distributed uniformly in the earth's crust. Two extreme models of the wave medium that account for the observations on the coda are proposed. In the single backscattering model the scattering is considered to be a weak process, and the loss of seismic energy by scattering is neglected. In the diffusion model the seismic energy transfer is considered as a diffusion process. Both models lead to similar formulas that allow an accurate separation of the effect of earthquake source from the effects of scattering and attenuation on the coda spectra. A unique difference was found in the scaling law of earthquake source spectra between central California and western Japan, which may be attributed to the difference in inhomogeneity length of the earth's crust. The Q of coda waves in the two regions is strongly frequency dependent with values increasing from 50–200 at 1 Hz to about 1000–2000 at 20 Hz. This observation is interpreted as a combined effect of variation of Q with depth and frequency-dependent composition of coda waves described below. The turbidity coefficient of the lithosphere required at 1 Hz to explain the observed coda as body wave scattering is orders of magnitude greater than previously known values such as those obtained by Aki (1973) and Capon (1974) under the Montana Lasa from the amplitude and phase fluctuations of teleseismic P waves. From the high attenuation and turbidity obtained at this frequency we conclude that at around 1 Hz the coda is made of backscattering surface waves from heterogeneities in the shallow, low-Q lithosphere. The high Q observed for the coda at frequencies higher than 10 Hz, on the other hand, eliminates the possibility that these waves are backscattering surface waves. We conclude that at these high frequencies the coda must be made of backscattering body waves from heterogeneities in the deep lithosphere. The low turbidities found for deep earthquake sources under western Japan are consistent with this model of coda wave generation.

1,552 citations

Journal ArticleDOI
TL;DR: There are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites, but the channel capacity depends on the distance, and may be extremely limited.
Abstract: Acoustic propagation is characterized by three major factors: attenuation that increases with signal frequency, time-varying multipath propagation, and low speed of sound (1500 m/s). The background noise, although often characterized as Gaussian, is not white, but has a decaying power spectral density. The channel capacity depends on the distance, and may be extremely limited. Because acoustic propagation is best supported at low frequencies, although the total available bandwidth may be low, an acoustic communication system is inherently wideband in the sense that the bandwidth is not negligible with respect to its center frequency. The channel can have a sparse impulse response, where each physical path acts as a time-varying low-pass filter, and motion introduces additional Doppler spreading and shifting. Surface waves, internal turbulence, fluctuations in the sound speed, and other small-scale phenomena contribute to random signal variations. At this time, there are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites.

1,493 citations

Journal ArticleDOI
TL;DR: In this paper, the field configurations and propagation constants of a hollow circular waveguide made of dielectric material or metal for application as an optical waveguide were determined and the increase of attenuation due to curvature of the axis was also determined.
Abstract: The field configurations and propagation constants of the normal modes are determined for a hollow circular waveguide made of dielectric material or metal for application as an optical waveguide. The increase of attenuation due to curvature of the axis is also determined. The attenuation of each mode is found to be proportional to the square of the free-space wavelength λ and inversely proportional to the cube of the cylinder radius a. For a hollow dielectric waveguide made of glass with v = 1.50, λ = 1μ, and a = 1 mm, an attenuation of 1.85 db/km is predicted for the minimum-loss mode, EH 11 . This loss is doubled for a radius of curvature of the guide axis R ≈, 10 km. Hence, dielectric materials do not seem suitable for use in hollow circular waveguides for long distance optical transmission because of the high loss introduced by even mild curvature of the guide axis. Nevertheless, dielectric materials are shown to be very attractive as guiding media for gaseous amplifiers and oscillators, not only because of the low attenuation but also because the gain per unit length of a dielectric tube containing He-Ne “masing” mixture at the right pressure can be considerably enhanced by reducing the tube diameter. In this application, a small guide radius is desirable, thereby making the curvature of the guide axis not critical. For λ = 0.6328μ and optimum radius a = 0.058 mm, a maximum theoretical gain of 7.6 db/m is predicted. It is shown that the hollow metallic circular waveguide is far less sensitive to curvature of the guide axis. This is due to the comparatively large complex dielectric constant exhibited by metals at optical frequencies. For a wavelength λ = 1μ and a radius a = 0.25 mm, the attenuation for the minimum loss TE 01 mode in an aluminum waveguide is only 1.8 db/km. This loss is doubled for a radius of curvature as short as R ≈ 48 meters. For λ = 3μ and a = 0.6 mm, the attenuation of the TE 01 mode is also 1.8 db/km. The radius of curvature which doubles this loss is approximately 75 meters. The

1,482 citations

Journal ArticleDOI
TL;DR: In this paper, a pigment-dependent optical model is developed to predict the propagation of visible radiant energy within the ocean or the backscattered radiation from the upper layer to be predicted as a function of the local phytoplanktonic content.
Abstract: The aim of the present study is to review and tentatively to interpret the optical behavior of oceanic case I waters, those waters for which phytoplankton and their derivative play a predominant role in determining their optical properties. Chlorophyll-like pigment concentration is used as the index to quantify the algal material (living and detrital), and statistical relationships between this index and the depth of the euphotic layer, the spectral values of the attenuation coefficient for downwelling irradiance, or the scattering coefficient are investigated. On the basis of these statistical relationships a pigment-dependent optical model is developed. It allows the propagation of the visible radiant energy within the ocean or the backscattered radiation from the upper layer to be predicted as a function of the local phytoplanktonic content. Other geophysical or geochemical applications are derived which concern the heating rate due to penetrating visible radiations or the rate of energy storage due to photosynthesis. The nonlinear trends observed in the algal biomass-attenuation relationships are analyzed by (1) considering the rather regular change of the living-to-detrital organic carbon ratio which seems to occur in oceanic waters ranging from oligotrophic to eutrophic, and (2) accounting for the respective contributions of absorption (by pigmented cells) and of scattering (by all kind of particulates) in the attenuation process of radiant energy.

1,385 citations

Journal ArticleDOI
TL;DR: A simple analytical method is presented that shows some potential for application to the problem of extracting attenuation and backscatter coefficients in an inhomogeneous atmosphere from the return signal of a monostatic single-wavelength lidar system.
Abstract: A simple analytical method is presented that shows some potential for application to the problem of extracting attenuation and backscatter coefficients in an inhomogeneous atmosphere from the return signal of a monostatic single-wavelength lidar system. The method assumes the validity of the single-scattering lidar equation and a power law relationship between backscatter and attenuation. For optical depths greater than unity the inversion method can be applied in principle using only information contained in the signal itself. In contrast to a well-known related analytical inversion solution, the new solution form is shown to be stable with respect to perturbations in the signal, the postulated relationship between backscatter and attenuation, and the assumed or estimated boundary value of attenuation.

1,364 citations


Network Information
Related Topics (5)
Beam (structure)
155.7K papers, 1.4M citations
80% related
Scattering
152.3K papers, 3M citations
80% related
Electric field
87.1K papers, 1.4M citations
78% related
Wavelet
78K papers, 1.3M citations
78% related
Communication channel
137.4K papers, 1.7M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,839
20223,655
2021859
2020979
20191,085