Topic

# Authenticated encryption

About: Authenticated encryption is a(n) research topic. Over the lifetime, 1328 publication(s) have been published within this topic receiving 25968 citation(s). The topic is also known as: AEAD & Authenticated Encryption with Associated Data.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

PARC

^{1}TL;DR: Use of encryption to achieve authenticated communication in computer networks is discussed and example protocols are presented for the establishment of authenticated connections, for the management of authenticated mail, and for signature verification and document integrity guarantee.

Abstract: Use of encryption to achieve authenticated communication in computer networks is discussed. Example protocols are presented for the establishment of authenticated connections, for the management of authenticated mail, and for signature verification and document integrity guarantee. Both conventional and public-key encryption algorithms are considered as the basis for protocols.

2,622 citations

•

[...]

TL;DR: This work considers two possible notions of authenticity for authenticated encryption schemes, namely integrity of plaintexts and integrity of ciphertexts, and relates them to the standard notions of privacy IND-CCA and NM-CPA by presenting implications and separations between all notions considered.

Abstract: An authenticated encryption scheme is a symmetric encryption scheme whose goal is to provide both privacy and integrity. We consider two possible notions of authenticity for such schemes, namely integrity of plaintexts and integrity of ciphertexts, and relate them (when coupled with IND-CPA) to the standard notions of privacy (IND-CCA,NM-CPA) by presenting implications and separations between all notions considered. We then analyze the security of authenticated encryption schemes designed by “generic composition,” meaning making blackbox use of a given symmetric encryption scheme and a given MAC. Three composition methods are considered, namely Encrypt-and-MAC, MAC-then-encrypt, and Encrypt-then-MAC. For each of these, and for each notion of security, we indicate whether or not the resulting scheme meets the notion in question assuming the given symmetric encryption scheme is secure against chosen-plaintext attack and the given MAC is unforgeable under chosen-message attack. We provide proofs for the cases where the answer is “yes” and counter-examples for the cases where the answer is “no.”

698 citations

••

[...]

05 Nov 2001

TL;DR: It is proved OCB secure, quantifying the adversary's ability to violate the mode's privacy or authenticity in terms of the quality of its block cipher as a pseudorandom permutation (PRP) or as a strong PRP, respectively.

Abstract: We describe a parallelizable block-cipher mode of operation that simultaneously provides privacy and authenticity. OCB encrypts-and-authenticates a nonempty string M e {0,1} using \lceil |M|/n\rceil + 2 block-cipher invocations, where n is the block length of the underlying block cipher. Additional overhead is small. OCB refines a scheme, IAPM, suggested by Charanjit Jutla. Desirable properties of OCB include: the ability to encrypt a bit string of arbitrary length into a ciphertext of minimal length; cheap offset calculations; cheap session setup; a single underlying cryptographic key; no extended-precision addition; a nearly optimal number of block-cipher calls; and no requirement for a random IV. We prove OCB secure, quantifying the adversary's ability to violate the mode's privacy or authenticity in terms of the quality of its block cipher as a pseudorandom permutation (PRP) or as a strong PRP, respectively.

618 citations

••

[...]

TL;DR: In this paper, the authors consider two possible notions of authenticity for authenticated encryption schemes, namely integrity of plaintexts and integrity of ciphertexts, and relate them, when coupled with IND-CPA (indistinguishability under chosen-plaintext attack), to the standard notions of privacy IND-CCA and NMCPA, and provide proofs for the cases where the answer is "yes" and counter-examples for the answer "no".

Abstract: An authenticated encryption scheme is a symmetric encryption scheme whose goal is to provide both privacy and integrity. We consider two possible notions of authenticity for such schemes, namely integrity of plaintexts and integrity of ciphertexts, and relate them, when coupled with IND-CPA (indistinguishability under chosen-plaintext attack), to the standard notions of privacy IND-CCA and NM-CPA (indistinguishability under chosen-ciphertext attack and nonmalleability under chosen-plaintext attack) by presenting implications and separations between all notions considered. We then analyze the security of authenticated encryption schemes designed by “generic composition,” meaning making black-box use of a given symmetric encryption scheme and a given MAC. Three composition methods are considered, namely Encrypt-and-MAC, MAC-then-encrypt, and Encrypt-then-MAC. For each of these and for each notion of security, we indicate whether or not the resulting scheme meets the notion in question assuming that the given symmetric encryption scheme is secure against chosen-plaintext attack and the given MAC is unforgeable under chosen-message attack. We provide proofs for the cases where the answer is “yes” and counter-examples for the cases where the answer is “no.”

547 citations

••

[...]

TL;DR: This work analyzes the security of authenticated encryption schemes designed by "generic composition," meaning making black-box use of a given symmetric encryption scheme and a given MAC and indicates whether or not the resulting scheme meets the notion in question assuming the given symmetry is secure against chosen-plaintext attack and the given MAC is unforgeable under chosen-message attack.

Abstract: We consider two possible notions of authenticity for symmetric encryption schemes, namely integrity of plaintexts and integrity of ciphertexts, and relate them to the standard notions of privacy for symmetric encryption schemes by presenting implications and separations between all notions considered. We then analyze the security of authenticated encryption schemes designed by "generic composition," meaning making black-box use of a given symmetric encryption scheme and a given MAC. Three composition methods are considered, namely Encrypt-and-MAC plaintext, MAC-then-encrypt, and Encrypt-then-MAC. For each of these, and for each notion of security, we indicate whether or not the resulting scheme meets the notion in question assuming the given symmetric encryption scheme is secure against chosen-plaintext attack and the given MAC is unforgeable under chosen-message attack. We provide proofs for the cases where the answer is "yes" and counter-examples for the cases where the answer is "no."

512 citations